Genetic predisposition to drug-induced hepatotoxicity.

J Hepatol

Service d'Hépatogastroentérologie, Hôpital Saint-Eloi, Montpellier, France.

Published: August 1997

AI Article Synopsis

  • - Drug-induced hepatitis is rare and unpredictable, often related to the drug or its reactive metabolites that can damage liver cells through different mechanisms, including idiosyncratic and immunoallergic reactions.
  • - Genetic variations in the body’s ability to detoxify drugs can affect individual susceptibility to liver damage, with deficiencies in certain enzymes like CYP 2D6 and CYP 2C19 linked to specific drug injuries.
  • - Further genetic deficiencies, such as in glutathione synthetase and metabolic pathways, increase the risk of hepatotoxicity from a variety of medications, highlighting the complexity of drug interactions and individual genetics.

Article Abstract

Drug-induced hepatitis is uncommon and generally unpredictable. Hepatotoxicity may be related to the drug itself, or to chemically reactive metabolites which can bind covalently to hepatic macromolecules and may lead to either idiosyncratic, toxic hepatitis or to immunoallergic hepatitis. There is now evidence indicating that genetic variations in systems of biotransformation or detoxication may modulate either the toxic or sensitizing effects of some drugs. Thus, the genetic deficiency in a particular hepatic cytochrome P 450 isozyme (CYP 2D6) is involved in per-hexiline liver injury. The deficiency in CYP 2C19 might also contribute to Atrium hepatotoxicity. Slow acetylation related to N-acetyltransferase 2 deficiency contributes to sulfonamide hepatitis. The genetic deficiency in glutathione synthetase may increase the susceptibility to several drugs including acetaminophen. A constitutional deficiency in another cell defense mechanism, still not characterized, seems to increase significantly the risk of hepatotoxicity with halothane, phenytoin, carbamazepine, phenobarbital, sulfamides and amineptine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-8278(97)80492-8DOI Listing

Publication Analysis

Top Keywords

genetic deficiency
8
deficiency
5
genetic
4
genetic predisposition
4
predisposition drug-induced
4
hepatotoxicity
4
drug-induced hepatotoxicity
4
hepatotoxicity drug-induced
4
hepatitis
4
drug-induced hepatitis
4

Similar Publications

Quantitative analysis of the root posture of mutants with wavy roots.

Quant Plant Biol

November 2024

Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan.

Plant postures are affected by environmental stimuli. When the gravitational direction changes, the mutants () and () exhibit aberrantly enhanced organ bending. Whether their phenotypes are due to the same mechanism is unknown.

View Article and Find Full Text PDF

Introduction: are the most common cause of food poisoning, which manifests itself in diarrhoea of varying severity. Additionally, because of the increasing number of people with immune deficiencies, more frequent serious complications of infections are being observed. The main source of infection is the consumption of contaminated poultry meat, which is a consequence of the insufficiency of current hygiene and biosecurity to control or eliminate it from the poultry food chain.

View Article and Find Full Text PDF

Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.

View Article and Find Full Text PDF

Multiple sulfatase deficiency (MSD) is an ultra-rare lysosomal disease caused by defective activation of cellular sulfatases comprising clinical features of mucopolysaccharidoses, sphingolipidoses, and other sulfatase deficiencies. We present a case of an infant with feeding difficulties related to autism spectrum disorder (ASD) who was diagnosed at 10 months of age with MSD by next-generation sequencing (NGS). Biochemical results obtained in dried blood spot (DBS) samples were inconsistent and not suggesting MSD in the light of identified pathogenic SUMF1 variants.

View Article and Find Full Text PDF

The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair.

Nat Metab

January 2025

State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.

Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!