Misdirection of sensory fibers into motor pathways is, in part, responsible for the poor results obtained after peripheral nerve repair. After avulsion of the C-5 root in rats, the authors connected a C-4 ventral rootlet to the musculocutaneous nerve by means of a sural nerve graft. In this way, they were able to increase the number of regenerating motor fibers and avoid growth of sensory fibers into the nerve grafts. Functional recovery was evaluated electrophysiologically and histologically. The origin of the axons that reinnervated the nerve graft was analyzed by means of morphological studies including retrograde labeling procedures. Motor neurons survived and regenerated after the rootlet transfer and there was no functional impairment. Many neurons were retrograde labeled in the ventral horn and widespread biceps muscle reinnervation was demonstrated with recovery of nearly normal electrophysiological properties. Motor hyperreinnervation of the musculocutaneous nerve was observed. This high degree of reinnervation in a long (40-mm) graft was attributed to the good chance that a muscle fiber can be reinnervated by a motor fiber when the number of regenerating motor neurons is increased and when competitive sensory fibers are excluded from reinnervation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/jns.1997.87.1.0079 | DOI Listing |
PLoS One
January 2025
Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The objective of this study was the develop of fortified cookies enriched with oats flour and bitter gourd powder and monitoring the effects of these enrichments on the physicochemical, antioxidant, antimicrobial, and sensory attributes. This study was subjected to four treatments: control (0% oats flour and bitter gourd powder), T1 (10% oats flour), T2 (3% bitter gourd powder), and T3 (7% oats flour and 3% bitter gourd powder). Various physical properties of the cookies, including weight, thickness, diameter, spread ratio, baking loss, pH, and color values (L*, a*, and b*), were measured.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Seoul National University Bundang Hospital, Seongnam, Korea, Republic of (South).
Background: To elucidate the biological mechanisms underpinning the association between macular Retinal Nerve Fiber Layer (RNFL) thickness and cognitive function in older adults, this study investigates its correlation with brain volume and cortical thickness.
Method: From a community-dwelling prospective cohort, we included 166 non-demented participants aged over 65 years (mean age 75.2 ± 5.
Alzheimers Dement
December 2024
Faculty of Medicine, Arish University, Arish, North Sinai, Egypt.
Background: Lingual taste cells (LTCs) are taste buds' sensory cells that modulate gustation. This study's aim is to assess whether it can be successfully implanted in hippocampus, modulating learning and memory deficits observed in Alzheimer's Dementia (AD).
Methods: Retrospective trials on rodents i.
Food Res Int
January 2025
Instituto Federal de Educação, Ciência e Tecnologia (IFRJ), Departamento de Alimentos, Rio de Janeiro, RJ, Brazil. Electronic address:
The growing interest in reducing sugar and fat in processed foods has led to the use of fibers with prebiotic potential, such as inulin and xylooligosaccharide (XOS), as substitutes capable of enhancing nutritional value and sensory quality. Using an innovative approach with Free Just-About-Right (FREE JAR) to obtain Drivers of Liking, this study evaluated consumer perception (n = 129) regarding the impact of adding inulin and XOS to Dulce de Leche with or without fat reduction. The term "Too Greasy" was significant for the product made with whole milk; however, adding inulin and XOS mitigated this effect and promoted the sensation of JAR sweetness.
View Article and Find Full Text PDFJ Clin Gastroenterol
January 2025
Department of Surgery, Oncology and Gastroenterology, University of Padua.
Among the various factors implicated in the pathogenesis of gastroesophageal reflux disease (GERD), visceral hypersensitivity and mucosal resistance have been recently re-evaluated in relation to the increasing phenomenon of proton pump inhibitor failure, particularly in patients with nonerosive reflux disease (NERD). Intensive research has allowed us to understand that noxious substances contained in the refluxate are able to interact with esophageal epithelium and to induce the elicitation of symptoms. The frequent evidence of microscopic esophagitis able to increase the permeability of the mucosa, the proximity of sensory afferent nerve fibers to the esophageal lumen favoring the higher sensitivity to noxious substances and the possible activation of inflammatory pathways interacting with sensory nerve endings are pathophysiological alterations confirming that mucosal resistance is impaired in GERD patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!