The pore-forming alpha 1 subunit of L-type calcium (Ca2+) channels is the molecular target of Ca2+ channel blockers such as phenylalkylamines (PAAs). Association and dissociation rates of (-)devapamil were compared for a highly PAA-sensitive L-type Ca2+ channel chimera (Lh) and various class A Ca2+ channel mutants. These mutants carry the high-affinity determinants of the PAA receptor site in a class A sequence environment. Apparent drug association and dissociation rate constants were significantly affected by the sequence environment (class A or L-type) of the PAA receptor site. Single point mutations affecting the high-affinity determinants in segments IVS6 of the PAA receptor site, introduced into a class A environment, reduced the apparent drug association rates. Mutation I1811M in transmembrane segment IVS6 (mutant AL25/-I) had the highest impact and decreased the apparent association rate for (-)devapamil by approximately 30-fold, suggesting that this pore-lining isoleucine in transmembrane segment IVS6 plays a key role in the formation of the PAA receptor site. In contrast, apparent drug dissociation rates of Ca2+ channels in the resting state were almost unaffected by point mutations of the PAA receptor site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180917PMC
http://dx.doi.org/10.1016/S0006-3495(97)78056-1DOI Listing

Publication Analysis

Top Keywords

receptor site
24
paa receptor
20
sequence environment
12
ca2+ channel
12
apparent drug
12
ca2+ channels
8
association dissociation
8
dissociation rates
8
high-affinity determinants
8
drug association
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!