Changes in the secondary structure of enzymes induced by gamma-rays 60Co at doses not exceeding one ionization per macromolecule were studied to elucidate a possible role of radiation-chemical processes in the evolution of proteins. The data on the comparative radioresistance of various types of secondary protein structures, alpha-helix, parallel and anti-parallel beta-structures, and beta-turn, were obtained by the method of circular dichroism. It was shown that beta-turns were resistant against radiation, alpha-helix was relatively stable, and beta-layer underwent significant changes. The importance of these structural types in the evolution of proteins is discussed. A special role of beta-turn as structural elements fixing the confirmation of macromolecules and therefore responsible for adaptation of the protein structure against a constant radiation background is proposed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

secondary structure
8
evolution proteins
8
[the role
4
role elements
4
elements protein
4
protein secondary
4
structure adaptation
4
adaptation action
4
action ionizing
4
ionizing radiation]
4

Similar Publications

Objective: Minimally invasive dentistry is being widely practiced. The center stone is to be as conservative as possible to minimize unnecessary removal of healthy tooth structure. In prosthodontics the patients have generalized and combined nature of diseases.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

The quantitative characterization of the structure of biomineral surfaces is needed for guiding regenerative strategies. Current techniques are compromised by a requirement for extensive sample preparation, limited length-scales, or the inability to repeatedly measure the same surface over time and monitor structural changes. We aim to address these deficiencies by developing Calcium (Ca) K-edge Polarisation Induced Contrast X-ray Fluorescence (PIC-XRF) to quantify hydroxyapatite (HAp) crystallite structural arrangements in high and low textured surfaces.

View Article and Find Full Text PDF

Hydrophilic interaction chromatography coupled to high resolution mass spectrometry (HILIC-LC-HRMS): An approach to study natural peptides in Viperidae snake venom.

J Chromatogr A

January 2025

Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil. Electronic address:

Although proteins in snake venoms have been extensively studied and characterized, low-mass molecules remain relatively unexplored, mainly due to their low abundance, secondary role in envenomation, and some analytical technique limitations. However, these small molecules can provide new important data related to venom toxins' molecular structure, functions, and evolutionary relationships. This research aimed to characterize molecules below 10 kDa in the venoms of snakes from the Viperidae families (Bothrops, Agkistrodon, and Bitis) and compare two chromatographic approaches: reverse-phase chromatography (RP), a classic technique, and hydrophilic interaction liquid chromatography (HILIC), an alternative technique, both coupled with high-resolution mass spectrometry (HRMS).

View Article and Find Full Text PDF

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone.

Nat Commun

January 2025

Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!