Glycogen-storage disease type II (GSD II, acid maltase deficiency, Pompe's disease) is caused by defects in the lysosomal acid alpha-glucosidase (GAA) gene. Clinically, patients with the severe infantile form of GSD II have muscle weakness and cardiomyopathy eventually leading to death before the age of two years. Patients with the juvenile or the adult form of GSD II present with myopathy with a slow progression over several years or decades. Apart from a common base substitution in intron1, designated IVS1(-13T-->G) and resulting in the aberrant splicing of exon 2, the other mutations recently discovered in the GAA gene are rare and often unique to single patients. In this paper, we identified a two-base frameshift deletion in three unrelated adult-onset GSD II patients. This small deletion lies in the first coding exon (exon 2) and results in a premature stop codon at the very 5' end of the coding sequence of the GAA gene. The three patients were compound heterozygotes and two of them had the common IVS1(-13G-->T) mutation on the second allele. We speculate that this novel deletion may be relatively frequent among French patients, possibly leading to the severe infantile phenotype of GSD II if it occurs in homozygous form.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1997.6749DOI Listing

Publication Analysis

Top Keywords

gaa gene
12
glycogen-storage disease
8
disease type
8
acid maltase
8
maltase deficiency
8
small deletion
8
french patients
8
severe infantile
8
form gsd
8
patients
7

Similar Publications

Background: Bleomycin (BLM), an anticancer medication, can exacerbate pulmonary fibrosis by inducing oxidative stress and inflammation. Anti-inflammatory, anti-fibrotic, and antioxidant properties are exhibited by ganoderic acid A (GAA).

Aim: So, we aim to assess GAA's protective impact on lung fibrosis induced via BLM.

View Article and Find Full Text PDF

H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a multifactorial polygenic disease that develops as a result of a complex interaction of numerous genetic factors and the external environment. Accordingly, the contribution of each of them separately is usually not large and may significantly depend on the state of other accompanying factors. The purpose of the study was to search for informative predictors of MI risk based on polygenic analysis of polymorphic variants of (1) the antioxidant defense enzyme genes PON1 (rs662), PON2 (rs7493), CAT (rs1001179), MSRA (rs10098474) and GSTP1 (rs1695); (2) the apoptosis genes CASP8 (rs3834129), TP53 (rs1042522) and BCL2 (rs12454712); and (3) the inflammation genes CRP (rs1205), CX3CR1 (rs3732378), IL6 (rs1800795) and CCL2 (rs1024611).

View Article and Find Full Text PDF

Background: Pueraria is an edible and medicinal raw material, which is of great value to the pharmaceutical and food industries. Nonetheless, due to morphological diversity and complex domestication history, the classification of Pueraria plants is ambiguous. As the varieties on the market are mixed, the species are difficult to distinguish, and their morphological characteristics are similar to the physical and chemical properties.

View Article and Find Full Text PDF

Plasma miRNAs Correlate with Structural Brain and Cardiac Damage in Friedreich's Ataxia.

Cerebellum

December 2024

Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil.

Friedreich's Ataxia (FRDA) is the most common autosomal recessive ataxia worldwide and is caused by biallelic unstable intronic GAA expansions at FXN. With its limited therapy and the recent approval of the first disease-modifying agent for FRDA, the search for biological markers is urgently needed to assist and ease the development of therapies. MiRNAs have emerged as promising biomarkers in various medical fields such as oncology, cardiology, epilepsy and neurology as well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!