A genomic DNA fragment that complements a newly identified protein glycosylation-defective mutation, vig9, of Saccharomyces cerevisiae was cloned. Chromosomal integration of this fragment by homologous recombination indicated that it contains the wild type VIG9 gene. The nucleotide sequence was determined. A predicted gene product showed significant amino acid sequence homology with several bacterial enzymes that catalyze the synthesis of (deoxy)ribonucleotide diphosphate sugars from sugar phosphates and (deoxy)ribonucleotide triphosphate. We examined the enzyme activity to synthesize GDP-mannose in the cell extracts of the wild type, vig9-1 mutant, and VIG9 transformant yeasts. Reduction of the activity in the mutant cell and its restoration by VIG9 suggested that the VIG9 gene is the structural gene for GDP-mannose pyrophosphorylase of S. cerevisiae which catalyzes the production of GDP-mannose. We demonstrated the enzyme activity of Vig9 protein using a recombinant fusion protein produced in Escherichia coli.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.26.16308DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
gdp-mannose pyrophosphorylase
8
wild type
8
vig9 gene
8
enzyme activity
8
vig9
7
cerevisiae vig9
4
vig9 encodes
4
gdp-mannose
4
encodes gdp-mannose
4

Similar Publications

Cytoophidium complexes resonate with cell fates.

Cell Mol Life Sci

January 2025

School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Metabolism is a fundamental characteristic of life. In 2010, we discovered that the metabolic enzyme CTP synthase (CTPS) can assemble a snake like structure inside cells, which we call the cytoophidium. Including CTPS, an increasing number of metabolic enzymes have been found to form cytoophidia in cells.

View Article and Find Full Text PDF

Heterologous Biosynthesis of Terpenoids in Saccharomyces cerevisiae.

Biotechnol J

January 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids.

View Article and Find Full Text PDF

Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome.

Nat Commun

January 2025

School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.

The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.

View Article and Find Full Text PDF

Fish collagen mediated alteration of wheat starch thermal properties during multi-species co-fermentation.

Int J Biol Macromol

January 2025

College of Agriculture, Henan University, Kaifeng 475004, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore; Food Laboratory of Zhongyuan, Luohe 462000, China. Electronic address:

This study explores the impact of multi-species co-fermentation on the thermal properties of wheat starch, emphasizing the innovative use of fish collagen as an additive. The effects of adding different levels of fish collagen (0 %, 3 %, 6 %, 9 %, 12 %, and 15 %) on the thermal properties of starch were investigated during co-fermentation with Lactobacillus plantarum and Saccharomyces cerevisiae. Utilizing analytical techniques such as X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), we observed a significant increase in the degree of order from 1.

View Article and Find Full Text PDF

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!