P-insertion mutations were obtained and localized by in situ methods at the agnostic gene (agn: 1-38.9; 11AB) in Drosophila. All agn mutants showed a wide spectrum of pleiotropic effects: an EMS-induced mutation of the agn-ts398 improved the ability to develop a conditioned defensive response and increased the activity of cAMP metabolic enzymes; spontaneous mutation of agnX1 showed morphological defects of the brain. P-insertion mutations were used to clone the gene; a restriction map of 80 kb in length was determined, and the insertion was localized to a fragment of 9 kb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02462890 | DOI Listing |
PLoS Genet
July 2019
Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan.
Males of the Drosophila melanogaster mutant croaker (cro) generate a polycyclic pulse song dissimilar to the monocyclic songs typical of wild-type males during courtship. However, cro has not been molecularly mapped to any gene in the genome. We demonstrate that cro is a mutation in the gene encoding the Calmodulin-binding transcription factor (Camta) by genetic complementation tests with chromosomal deficiencies, molecular cloning of genomic fragments that flank the cro-mutagenic P-insertion, and phenotypic rescue of the cro mutant phenotype by Camta+-encoding cDNA as well as a BAC clone containing the gene for Camta.
View Article and Find Full Text PDFFly (Austin)
June 2013
Biology Department, Division of Natural Sciences, College of Mount Saint Vincent, Riverdale, NY, USA.
Spermatogenesis in all animal species occurs within a syncytium. Only at the very end of spermatogenesis are individual sperm cells resolved from this syncytium in a process known as individualization. Individualization in Drosophila begins as a membrane-cytoskeletal complex known as the individualization complex (IC) assembles around the sperm heads and proceeds down the flagella, removing cytoplasm from between the sperm tails and shrink-wrapping each spermatid into its own plasma membrane as it travels.
View Article and Find Full Text PDFEur J Cell Biol
August 2009
Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
Rab11(mo), a P insertion line of Rab11 showed degenerated ommatidia and excess cell death in larval/pupal eyes. Here, we demonstrate that Rab11 is essential for normal organization of ommatidial cells and their survival in Drosophila, and a mutation in this gene results in cytoskeleton disruption and activation of JNK signaling in the eye. The spatial organization of various cell types in compound eye, viz.
View Article and Find Full Text PDFGenetics
May 2009
Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA.
The D1 protein is a high mobility group A (HMGA)-like nonhistone chromosomal protein with primary localization to certain AT-rich satellite DNA sequences within heterochromatin. The binding of D1 to euchromatic sequences is less studied and the functional significance of its chromosomal associations is unclear. By taking advantage of existing P-insertion alleles of the D1 gene, I generated D1 null mutations to investigate the phenotypic effect of loss of the D1 gene.
View Article and Find Full Text PDFCell Biol Int
September 2008
Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India.
Rab11, a small GTP binding protein involved in vesicular trafficking, has emerged as a key player in regulating various cellular events during Drosophila development and differentiation. In our earlier study a P-insertion line, Rab11mo, was established as a new hypomorphic allele of Rab11 gene, showing degenerated eye phenotype, bristle abnormalities and sterility. We show here that Rab11 is expressed in the entire testis, more prominently in the secretory cells, and in ovary it is localized at the posterior pole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!