Possible role of BARS-50, a substrate of brefeldin A-dependent mono-ADP-ribosylation, in intracellular transport.

Adv Exp Med Biol

Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro (Chieti), Italy.

Published: September 1997

Brefeldin A (BFA), a fungal metabolite that inhibits membrane transport, potently stimulates an endogenous ADP-ribosylation reaction that selectively modifies two cytosolic proteins of 38 and 50 kDa on an amino acid residue different from those used by all known mADPRTs. The 38-kDa substrate was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), whereas the 50-kDa substrate (BARS-50) was characterized as a novel guanine nucleotide binding protein. Thus, BARS-50 is able to bind GTP and its ADP-ribosylation is inhibited by the beta gamma subunit of GTP-binding (G) proteins. Moreover, BARS-50 was demonstrated to be a group of closely related proteins that appear to be different from all the known G proteins. A partially purified BARS-50 was obtained from rat brain cytosol, which was then used for microsequencing and in functional studies. A similar procedure led to the purification of native (non-ADP-ribosylated) BARS-50. The possible role of the BFA-dependent ADP-ribosylation and of BARS-50 in the maintenance of Golgi structure and function was addressed by examining which of the effects of BFA may be modified by inhibiting this reaction. We find that the BFA-dependent transformation of the Golgi stacks into a tubular reticular network is prevented when the BFA-dependent ADP-ribosylation activity was blocked by specific inhibitors thus indicating that BFA-dependent ADP-ribosylation of cytosolic proteins participate in the dynamic regulation of intracellular transport.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4419-8632-0_42DOI Listing

Publication Analysis

Top Keywords

bfa-dependent adp-ribosylation
12
intracellular transport
8
cytosolic proteins
8
bars-50
6
adp-ribosylation
5
proteins
5
role bars-50
4
bars-50 substrate
4
substrate brefeldin
4
brefeldin a-dependent
4

Similar Publications

Mouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the endoplasmic reticulum (ER) membrane into a functional N-terminal signal peptide (SP) and the C terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, and yet it was not detectably secreted into cell supernatants.

View Article and Find Full Text PDF

Architecture of the vimentin cytoskeleton is modified by perturbation of the GTPase ARF1.

J Cell Sci

September 2006

Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA.

Intermediate filaments are required for proper membrane protein trafficking. However, it remains unclear whether perturbations in vesicular membrane transport result in changes in the architecture of the vimentin cytoskeleton. We find that treatment of cells with Brefeldin A, an inhibitor of specific stages of membrane transport, causes changes in the organization of vimentin filaments.

View Article and Find Full Text PDF

Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport.

Mol Cell Biochem

March 1999

Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Department of Cell Biology and Oncology, Santa Maria Imbaro (Chieti), Italy.

The fungal toxin brefeldin A (BFA) dissociates coat proteins from Golgi membranes, causes the rapid disassembly of the Golgi complex and potently stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa. These proteins have been identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a novel guanine nucleotide binding protein (BARS-50), respectively. The role of ADP-ribosylation in mediating the effects of BFA on the structure and function of the Golgi complex was analyzed by several approaches including the use of selective pharmacological blockers of the reaction and the use of ADP-ribosylated cytosol and/or enriched preparations of the BFA-induced ADP-ribosylation substrates, GAPDH and BARS-50.

View Article and Find Full Text PDF

Role of NAD+ and ADP-ribosylation in the maintenance of the Golgi structure.

J Cell Biol

December 1997

Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (Chieti), Italy.

We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A.

View Article and Find Full Text PDF

Characterization of the endogenous mono-ADP-ribosylation stimulated by brefeldin A.

Adv Exp Med Biol

September 1997

Istituto di Ricerche Farmacologiche Mario Negri, Department of Cell Biology and Oncology-66030, S. Maria Imbaro (Chieti), Italy.

We have recently described a novel enzymatic mono-ADP-ribosyl transfer reaction induced by brefeldin A, a well characterized inhibitor of vesicular traffic, which selectively modifies two cytosolic proteins of 38 kDa (p38) and 50 kDa (BARS-50). p38 was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme and a multifunctional protein involved in several cellular processes; BARS-50 might be a novel G protein, since it is able to bind GTP and the beta gamma subunit of G proteins. We have characterized this enzymatic activity and screened in vitro the effects of different drugs belonging to the coumarine (dicumarol, coumermicin A1 and novobiocin) and quinone (ilimaquinones, benzoquinones and naphtoquinones) class.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!