Glial-cell-line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two structurally related, potent survival factors for sympathetic, sensory and central nervous system neurons. GDNF mediates its actions through a multicomponent receptor system composed of a ligand-binding glycosyl-phosphatidylinositol (GPI)-linked protein (designated GDNFR-alpha) and the transmembrane protein tyrosine kinase Ret. In contrast, the mechanism by which the NTN signal is transmitted is not well understood. Here we describe the identification and tissue distribution of a GPI-linked protein (designated NTNR-alpha) that is structurally related to GDNFR-alpha. We further demonstrate that NTNR-alpha binds NTN (K[d] approximately 10 pM) but not GDNF with high affinity; that GDNFR-alpha binds to GDNF but not NTN with high affinity; and that cellular responses to NTN require the presence of NTNR-alpha. Finally, we show that NTN, in the presence of NTNR-alpha, induces tyrosine-phosphorylation of Ret, and that NTN, NTNR-alpha and Ret form a physical complex on the cell surface. These findings identify Ret and NTNR-alpha as signalling and ligand-binding components, respectively, of a receptor for NTN and define a novel family of receptors for neurotrophic and differentiation factors composed of a shared transmembrane protein tyrosine kinase and a ligand-specific GPI-linked protein.

Download full-text PDF

Source
http://dx.doi.org/10.1038/42722DOI Listing

Publication Analysis

Top Keywords

gpi-linked protein
16
ret form
8
ntn
8
protein designated
8
transmembrane protein
8
protein tyrosine
8
tyrosine kinase
8
high affinity
8
presence ntnr-alpha
8
ntnr-alpha
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!