Lack of tumor selectivity is a severe limitation of cancer chemotherapy. Consequently, reducing dose-limiting organ toxicities such as the cardiac toxicity of doxorubicin (Dox) is of major clinical relevance. Approaches that would facilitate a more tumor-selective anticancer therapy by using nontoxic prodrugs that are converted to active anticancer agents at the tumor site have been the subject of intensive research. One potential method to overcome the cardiac toxicity of Dox is to apply a nontoxic, glucuronide prodrug (HMR 1826) from which Dox is released by the action of beta-glucuronidase, an enzyme present at high levels in many tumors. Using a recently developed, isolated, perfused human lung model, we compared the uptake of Dox into normal lung and lung tumors after a 2.5-h lung perfusion with doxorubicin (n = 8) and with the novel doxorubicin glucuronide prodrug (n = 8). Dox showed a poor uptake into lung tumors as compared with normal lung [mean Dox concentration at the end of perfusion, 1.78 +/- 3.11 (median, 0.66) microg/g versus 22.03 +/- 10.4 (median, 18.5) microg/g; P < 0.001]. However, after perfusion with HMR 1826, the level of Dox in tumor tissue was about 7-fold higher than after perfusion with Dox itself [14.04 +/- 12.9 (median, 12.9) microg/g versus 1.78 +/- 3.11 (median, 0.66) microg/g, P < 0.05, n = 8]. In vitro experiments showed a significantly higher beta-glucuronidase expression and activity in the tumors. The extent of in vitro cleavage of HMR 1826 by homogenized lung tissue was closely related to the content of beta-glucuronidase (r = 0.9834, P < 0.0001). When D-saccharolactone, a specific inhibitor of beta-glucuronidase, was added to the perfusate containing HMR 1826, no accumulation of Dox in lung tissue was seen. These data indicate that the high Dox levels achieved in the tumors with HMR 1826 resulted from cleavage of the prodrug by beta-glucuronidase at the tumor site. Thus, the problem of poor Dox uptake into lung tumors could be circumvented by applying the doxorubicin glucuronide prodrug. Several lines of evidence based on both ex vivo and in vitro results indicate that the approach described using a glucuronide prodrug may be useful in facilitating more selective delivery of chemotherapy to tumors in humans.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hmr 1826
24
glucuronide prodrug
20
doxorubicin glucuronide
12
tumor site
12
lung tumors
12
dox
11
lung
9
prodrug hmr
8
cardiac toxicity
8
normal lung
8

Similar Publications

Synthesis and antitumor efficacy of a β-glucuronidase-responsive albumin-binding prodrug of doxorubicin.

J Med Chem

May 2012

Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP, Université de Poitiers, UMR-CNRS 7285, 4 Rue Michel Brunet, 86022 Poitiers, France.

In this paper we describe the synthesis and biological evaluation of the first β-glucuronidase-responsive albumin-binding prodrug designed for the selective delivery of doxorubicin at the tumor site. This prodrug leads to superior antitumor efficacy in mice compared to HMR 1826, a well-known glucuronide prodrug of doxorubicin that cannot bind covalently to circulating albumin. Furthermore, this compound inhibits tumor growth in a manner similar to that of doxorubicin while avoiding side effects induced by the free drug.

View Article and Find Full Text PDF

Doxorubicin conjugates for selective delivery to tumors.

Top Curr Chem

April 2013

Laboratoire de Pharmacochimie, Institut Curie, 26 rue d'Ulm, 75248, Paris cedex 05, France.

With the aim of improving the therapeutic utility of doxorubicin, numerous conjugates or prodrugshave been prepared to be selectively activated at the tumor site while releasing the cytotoxic drug.Among immuno-conjugates representing a widely studied class of doxorubicin derivatives,the clinical development of cBR96-Dox, undoubtedly the most quintessential derivative, was discontinueddue to severe secondary effects. More potent cBR-96 analogues and IMMU-110, another doxorubicin immunoconjugate,are still under study.

View Article and Find Full Text PDF

Background: When acted on by beta-glucuronidase (BG), HMR1826 is metabolized to doxorubicin. Use of this prodrug with adenoviral transfer of beta-glucuronidase (AdBG) is limited by the drug's inability to enter cells and intracellular retention of BG after transduction. We evaluated a system combining AdBG, transfer of the proapoptotic gene bax (AdBax) at a low multiplicity of infection, and HMR1826 administration.

View Article and Find Full Text PDF

Expression of active human beta-glucuronidase in Sf9 cells infected with recombinant baculovirus.

Life Sci

August 2002

Department of Pharmacology, Peter Holtz Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University Greifswald, Friedrich Loeffler Strasse 23d, 17489 Greifswald, Germany.

Antibody directed enzyme prodrug therapy (ADEPT) using glucuronide prodrugs is an experimental approach to reduce systemic toxicity of anti-cancer agents. Bioactivation of such prodrugs is achieved by fusion proteins consisting of targeting moieties (e.g.

View Article and Find Full Text PDF

HMR 1826 (N-[4-beta-Glucuronyl-3-nitrobenzyl-oxycarbonyl]doxorubicin) is a nontoxic glucuronide prodrug from which active doxorubicin is released by beta-glucuronidase. Preclinical studies aimed at dose optimization of HMR 1826, based on intratumoral pharmacokinetics, are important to design clinical studies. Using an isolated perfused human lung model, the uptake of doxorubicin into normal tissue and tumors after perfusion with 133 microg/ml (n = 6), 400 microg/ml (n = 10), and 1200 microg/ml (n = 6) HMR 1826 was compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!