Continuous in vitro propagation of the malaria parasite Plasmodium vivax.

Proc Natl Acad Sci U S A

Department of Entomology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.

Published: June 1997

The difficulty in controlling Plasmodium vivax, the most common cause of human malaria, has been complicated by growing drug resistance. We have established a method to cycle parasite generations in continuous culture using human blood cells. Chesson strain parasites were passaged from owl monkey erythrocytes to human reticulocytes in McCoy's 5A medium modified with L-glutamine with 25 mM Hepes buffer supplemented with 20% AB+ human serum. Reticulocytes were separated by differential centrifugation in homologous plasma from the peripheral blood of a hemochromatosis patient. Parasites were grown during each 48-hr cycle in a static candle jar environment until the beginning of schizogony, at about 36-40 hr, when reticulocytes were added and cultures transferred to a shaker for 10-12 hr. The addition of a concentration of 10% reticulocytes resulted in stabilizing parasite densities between 0.28 and 0.57 after cycle 3 and increasing the total number of parasites at least 2-fold with each generational cycle. Cultured parasites successfully infected an owl monkey. The morphology of cultured parasites was typical of P. vivax, with highly ameboid trophozoites evident; however, infected erythrocytes were enlarged and distorted on thin film preparations. The species identity of cultivated parasites was confirmed by analysis of the A and C 18S rRNA genes from genomic DNA and expression of only the A gene during erythrocytic asexual growth. The ability to culture P. vivax opens new opportunities to develop vaccines, test drugs, and clone parasites for genome sequencing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21236PMC
http://dx.doi.org/10.1073/pnas.94.13.6786DOI Listing

Publication Analysis

Top Keywords

plasmodium vivax
8
owl monkey
8
cultured parasites
8
parasites
7
continuous vitro
4
vitro propagation
4
propagation malaria
4
malaria parasite
4
parasite plasmodium
4
vivax
4

Similar Publications

Accurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images.

View Article and Find Full Text PDF

Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.

View Article and Find Full Text PDF

[Investigation of Molecular Differences in Plasmodium spp. Isolates Obtained from Malaria Patients].

Mikrobiyol Bul

January 2025

Sağlık Bilimleri Üniversitesi, Kayseri Şehir Eğitim ve Araştırma Hastanesi, Parazitoloji Laboratuvarı, Kayseri.

Sıtma, her yıl dünya nüfusunun yarısından fazlası için ciddi bir tehdit oluşturmaya devam etmektedir. Hastalığa neden olan Plasmodium parazitleri, yalnızca insanlarla sınırlı kalmayıp sürüngenlerden kuşlara, memelilerden diğer omurgalılara dek geniş enfeksiyon yelpazesine sahiptir. Plasmodium türleri, çevredeki değişikliklere uyum sağlamalarını sağlayan olağanüstü genetik esnekliğe sahiptir ve bu da onlara sıtma ilaçları gibi tedavi edici maddelere karşı hızla direnç geliştirme ve konakçı özgüllüğünü değiştirme potansiyeli verir.

View Article and Find Full Text PDF

Experiences, perceptions and ethical considerations of the malaria infection study in Thailand.

BMC Med Ethics

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Thunphayathai, Bangkok, 10400, Thailand.

Background: Thailand has made significant progress in malaria control efforts in the past decade, with a decline in the number of reported cases. However, due to cross-border movements over the past 5 years, reported malaria cases in Thailand have risen. The Malaria Infection Study in Thailand (MIST) involves deliberate infection of healthy volunteers with Plasmodium vivax malaria parasites, and the assessment of the efficacy of potential vaccine and drug candidates in order to understand acquired protection against malaria parasites.

View Article and Find Full Text PDF

Background: Malaria cases in the Republic of Korea decreased during the coronavirus disease 2019 pandemic but surged in 2023. Current models inadequately address spatial heterogeneity in transmission dynamics. This study aimed to address this by designing a region-structured model considering spatial heterogeneity based on regional malaria data from high-risk areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!