Does the reticular thalamic nucleus project to the midbrain?

J Neurocytol

Department of Anatomy and Histology, University of Sydney, Australia.

Published: April 1997

In this study, we investigated whether the reticular thalamic nucleus has a projection to major centres of the midbrain in rats, rabbits and cats. Various tracers (biotinylated dextran, cholera toxin B subunit, fluorescent latex beads) were injected either into the midbrain tectum (deep layers of the superior colliculus) or tegmentum (midbrain reticular and pedunculopontine nuclei). In other experiments, different coloured latex beads (red and green) were injected into the deep layers of the superior colliculus and into the midbrain reticular nucleus of the same animal (rabbits). Our major finding is that in rats, rabbits and cats, there are no retrogradely labelled cells in the reticular thalamic nucleus after tracer injections into the above mentioned midbrain centres. In rabbits and cats, however, there are retrogradely labelled cells lying close to the ventromedial edge of the reticular thalamic nucleus after such injections. We show, by means of immunocytochemical double-labelling, that these retrogradely labelled cells do not lie in the reticular thalamic nucleus as suggested by previous studies, but in the inner small-celled region, a group of small cells that forms part of the zona incerta. Although these appears to be no clear topography of projection of the inner small-celled region, our tracer double-labelling experiments show that separate cells in the inner small-celled region project to individual centres of the midbrain (i.e., there are very few double-labelled cells after double injections). In rats, unlike in rabbits and cats, there is no clearly defined inner small-celled region and there are no retrogradely labelled cells seen along the ventromedial edge of the reticular thalamic nucleus. Our results suggest that in rats, rabbits and cats, there is no projection of the reticular thalamic nucleus to major centres of the midbrain, suggesting that the nucleus may not have a very strong influence on midbrain function, as it does on dorsal thalamic function.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1018540231486DOI Listing

Publication Analysis

Top Keywords

reticular thalamic
28
thalamic nucleus
28
rabbits cats
20
rats rabbits
16
retrogradely labelled
16
labelled cells
16
inner small-celled
16
small-celled region
16
centres midbrain
12
reticular
9

Similar Publications

Sleep is crucial for maintaining brain homeostasis and individuals with insufficient sleep are prone to more pronounced brain atrophy as compared to sufficiently sleeping peers. Moreover, sleep quality deteriorates with ageing and ageing is also associated with cerebral structural and functional changes, pointing to their mutual bidirectional interrelationship. This study aimed at determining whether sleep quality and age, separately, affect brain integrity and subsequently, whether sleep significantly modulates the effect of age on brain structural and functional integrity.

View Article and Find Full Text PDF

Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice.

Front Mol Neurosci

December 2024

Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.

The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.

View Article and Find Full Text PDF

Modelling the effect of allopregnanolone on the resolution of spike-wave discharges.

J Comput Neurosci

December 2024

Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.

Article Synopsis
  • Childhood absence epilepsy (CAE) is a children's epilepsy that often resolves during adolescence, and this study investigates how the hormone allopregnanolone affects brain circuits involved in this disorder.
  • The research used a computational model of various brain neurons and found that allopregnanolone can help reduce spike-wave discharges linked to absence seizures, particularly in the thalamus.
  • The study suggests that the beneficial effects of allopregnanolone may vary among individuals based on their brain's connectivity and inhibition levels, paving the way for future research on remission in CAE patients.
View Article and Find Full Text PDF

The thalamic reticular nucleus (TRN) is a thin shell of gap junction coupled GABAergic inhibitory neurons that regulate afferent sensory relay of the thalamus. The TRN receives dopaminergic innervation from the midbrain, and it is known to express high concentrations of D1 and D4 receptors. Although dopaminergic modulation of presynaptic inputs to TRN has been described, the direct effect of dopamine on TRN neurons and its electrical synapses is largely unknown.

View Article and Find Full Text PDF

Restricted repetitive behaviors (RRB) encompass a variety of inflexible behaviors, which are diagnostic for autism spectrum disorder (ASD). Despite being requisite diagnostic criteria, the neurocircuitry of these behaviors remains poorly understood, limiting treatment development. Studies in translational animal models show environmental enrichment (EE) reduces the expression of RRB, although the underlying mechanisms are largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!