Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have developed an ex vivo gene therapy paradigm for the treatment of brain tumors using granulocyte-macrophage colony-stimulating factor (GM-CSF). Murine B16 melanoma cells were infected with MFG recombinant retrovirus containing the mouse GM-CSF cDNA. Subcutaneous vaccination of syngeneic mice with irradiated GM-CSF-secreting B16 melanoma cells was capable of completely protecting animals against subsequent intracranial B16 tumor inoculation, with up to 5 x 10(3) cells. Histologic evaluation revealed the presence of neutrophils, eosinophils, and lymphocytes, including CD4+, CD8+, and CD45R+ cells, in the intracerebral inoculation site, peaking 4 days after intracranial inoculation. In contrast, nonvaccinated animals or animals vaccinated with irradiated, nontransduced B16 cells succumbed to intracranial tumor within 3 weeks after inoculation. Treatment of established intracranial B16 melanoma tumors with subcutaneous injection of irradiated GM-CSF-secreting B16 cells significantly delayed death, as compared to injection of irradiated nontransduced B16 cells or no treatment. In addition, treatment of established intracerebral GL261 gliomas by vaccination with irradiated GM-CSF-secreting B16 cells mixed with irradiated, transduced, or nontransduced GL261 cells also extended survival. These B16/GL261 co-vaccinations also improved outcome and, in some cases, induced immunological memory that protected survivors from subsequent intracranial challenge with GL261 tumor cells. These findings indicate that peripheral vaccination with irradiated tumor cells in the presence of GM-CSF-producing cells can initiate a potent antitumor immune response against intracranial neoplasms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.1997.8.9-1065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!