Fluorescence and circular dichroism data as a function of temperature were obtained to characterize the unfolding of nuclease A and two of its less stable mutants. These spectroscopic data were obtained with a modified instrument that enables the nearly simultaneous detection of both fluorescence and CD data on the same sample. A global analysis of these multiple datasets yielded an excellent fit of a model that includes a change in the heat capacity change, deltaC(p), between the unfolded and native states. This analysis gives a deltaC(p) of 2.2 kcal/mol/ x K for thermal unfolding of the WT protein and 1.3 and 1.8 kcal/mol/K for the two mutants. These deltaC(p) values are consistent with significant population of the cold unfolded state at approximately 0 degrees C. Independent evidence for the existence of a cold unfolded state is the observation of a separately migrating peak in size exclusion chromatography. The new chromatographic peak is seen near 0 degrees C, has a partition coefficient corresponding to a larger hydrodynamic radius, and shows a red-shifted fluorescence spectrum, as compared to the native protein. Data also indicate that the high-temperature unfolded form of mutant nuclease is relatively compact. Size exclusion chromatography shows the high temperature unfolded form to have a hydrodynamic radius that is larger than that for the native form, but smaller than that for the urea or pH-induced unfolded forms. Addition of chemical denaturants to the high-temperature unfolded form causes a further unfolding of the protein, as indicated by an increase in the apparent hydrodynamic radius and a decrease in the rotational correlation time for Trp140 (as determined by fluorescence anisotropy decay measurements).

Download full-text PDF

Source

Publication Analysis

Top Keywords

unfolded state
12
hydrodynamic radius
12
unfolded form
12
high temperature
8
unfolded
8
temperature unfolded
8
unfolding protein
8
cold unfolded
8
size exclusion
8
exclusion chromatography
8

Similar Publications

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).

View Article and Find Full Text PDF

Protein translocation across cellular membranes is an essential and nano-scale dynamic process. In the bacterial cytoplasmic membrane, the core proteins in this process are a membrane protein complex, SecYEG, corresponding to the eukaryotic Sec61 complex, and a cytoplasmic protein, SecA ATPase. Despite more than three decades of extensive research on Sec proteins, from genetic experiments to cutting-edge single-molecule analyses, no study has visually demonstrated protein translocation.

View Article and Find Full Text PDF

Research and theory document links between sacrifices and commitment in couples, yet the direction of effects remains unclear. Whereas interdependence theorists suggest that sacrifices help couples to build commitment, other scholars have suggested that being committed leads partners to sacrifice for each other. Nearly all research in this area has focused on men and women in different-gender relationships with each other.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!