As low-weight anorectic patients presented a global as well as a regional absolute hypometabolism of glucose, we investigated a population of ten age- and sex-matched low-weight depressed patients without anorexia nervosa to evaluate the impact of weight loss on cerebral glucose metabolism evaluated by positron emission tomography and [18F]-fluorodeoxyglucose. Ten age- and sex-matched healthy volunteers were used as controls. Absolute global and regional glucose activity was significantly lower in anorectic and low weight depressed patients than in control subjects. Anorectic patients compared with normal control subjects also showed lower relative metabolism of glucose in the parietal cortex. Within patients, absolute hypometabolism of glucose seems to be a consequence of low-weight while there is a positive correlation between absolute metabolism of glucose and body mass index.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-0327(97)00034-7DOI Listing

Publication Analysis

Top Keywords

hypometabolism glucose
12
depressed patients
12
anorectic patients
12
low-weight depressed
8
absolute hypometabolism
8
ten age-
8
age- sex-matched
8
control subjects
8
metabolism glucose
8
glucose
7

Similar Publications

Early-phase F-Flortaucipir tau-PET as a proxy of brain metabolism in Alzheimer's disease: a comparison with F-FDG-PET and early-phase amyloid-PET.

Eur J Nucl Med Mol Imaging

January 2025

Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Purpose: As dual-phase amyloid-PET can evaluate amyloid (A) and neurodegeneration (N) with a single tracer injection, dual-phase tau-PET might be able to provide both tau (T) and N. Our study aims to assess the association of early-phase tau-PET scans and F-fluorodeoxyglucose (FDG) PET and their comparability in discriminating Alzheimer's disease (AD) patients and differentiating neurodegenerative patterns.

Methods: 58 subjects evaluated at the Geneva Memory Center underwent dual-phase F-Flortaucipir-PET with early-phase acquisition (eTAU) and F-FDG-PET within 1 year.

View Article and Find Full Text PDF

Objectives: Parkinson's disease (PD) is a neurodegenerative disorder with distinct metabolic alterations in the brain, which are detectable via 18F-FDG PET. This study aims to delineate glucose metabolism patterns and network topology changes across early- and mid-stage PD patients.

Methods: A total of 80 PD patients (Hoehn-Yahr stages 1-3) were retrospectively analyzed, including 40 early-stage and 40 mid-stage cases, along with 40 age-matched healthy controls.

View Article and Find Full Text PDF

Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.

View Article and Find Full Text PDF

Background: Impaired brain glucose metabolism is a preclinical feature of neurodegenerative diseases such as Alzheimer's disease (AD). Infections may promote AD-related pathology. Therefore, we investigated the interplay between infections and APOE4, a strong genetic risk factor for AD.

View Article and Find Full Text PDF

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!