Wheelchair propulsion kinetic measurements require the use of custom pushrim force/moment measuring instruments which are not currently commercially available. With the ability to measure pushrim forces and moments has come the development of several dynamic metrics derived for analyzing key aspects of wheelchair propulsion. This paper presents several of the equations used to calculate or derive the primary variables used in the study of wheelchair propulsion biomechanics. The uncertainties for these variables were derived, and then numerically calculated for a current version of the SMARTWheel. The uncertainty results indicate that the SMARTWheel provides data which has better than 5 to 10% uncertainty, depending upon the variable concerned, at the maximum, and during most of the propulsion phase the uncertainty is considerably smaller (i.e., approximately 1%). The uncertainty analysis provides a more complete picture of the attainable accuracy of the SMARTWheel and of the degree of confidence with which the data can be recorded. The derivations and results indicate where improvements in measurement of wheelchair propulsion biomechanical variables are likely to originate. The most efficient approach is to address those variables in the design of the system which make the greatest contribution to the uncertainty. Future research will focus on the point of force application and examination of nonlinear effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/86.593279 | DOI Listing |
Clin Biomech (Bristol)
January 2025
Faculty of Mechanical Engineering (FEMEC), Federal University of Uberlândia, Uberlândia, MG, Brazil.
Background: Wheelchair users face various health issues, such as cardiac problems, obesity, tissue deformation, and shoulder and wrist injuries. Although the subject of ergometry is known since 1912 and the mechanic of propulsion gesture and wheelchair configuration has been studied over the years, most of the equipment found in the literature are adaptations or lack the tools for standardization of techniques. This paper aims to conduct biomechanical validation of a new wheelchair ergometer (ERGO1) designed for assessing physical fitness and muscle training of the upper limbs of people with disabilities.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
January 2025
School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.
This exploratory qualitative study examines the challenges faced by manual wheelchair (MWC) users and their clinicians, with a focus on mobility difficulties in both outdoor and indoor environments, as well as training priorities. The study involved semi-structured interviews with 18 clinicians and 25 MWC users from various rehabilitation centres. The interviews, lasting between 30 and 60 minutes, explored specific aspects of MWC use, including mobility challenges, training needs, and psychological factors.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Sports and Exercise Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Wheelchair propulsion is a fundamental skill in wheelchair sports, particularly in wheelchair tennis. To achieve optimal mobility during wheelchair athletic performance, it is essential to consider propulsion techniques. This study examines the effect of push frequency and stroke duration on wheelchair maneuverability, measured by velocity during propulsion, among wheelchair tennis athletes.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
November 2024
Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
The main aim of this study was to compare sitting pressure (peak pressure index (PPI) and peak pressure gradient (PPG)) between a daily wheelchair and fixed-frame handcycle, thereby assessing the effect of handcycle backrest angle, movement intensity and cushion type. Twenty able-bodied participants performed static and dynamic (two intensities) tests in a wheelchair and handcycle. A honeycomb wheelchair cushion and standard foam handcycle cushion were used.
View Article and Find Full Text PDFJ Rehabil Med
November 2024
School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) - Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!