An initial genome scan was performed on 540 individuals from 97 families segregating bipolar disorder, collected through the National Institutes of Mental Health Genetics Initiative. We report here affected-sib-pair (ASP) data on 126 marker loci (approximately 68,000 genotypes) mapping to chromosomes 4, 7, 9, 18, 19, 20, and 21q, under three affection status models. Modest increases in identical-by-descent (IBD) allele sharing were found at the following loci: D4S2397 and D4S391 (P < 0.05) on 4p, D4S1647 (P < 0.05) on 4q, D7S1802 and D7S1869 (low P = 0.01) on 7p, D9S302 (P = 0.004) on 9q, and D20S604 on 20p and D20S173 on 20q (P < 0.05). In addition, five markers on 7q displayed increased IBD sharing (P = 0.046-0.002). Additional ASP analyses on chromosomes 18 and 21q marker data were performed using disease phenotype models defined previously. On chromosome 18, only D18S40 on 18p and D18S70 on 18q yielded a slight elevation in allele sharing (P = 0.02), implying that the reported linkages in these regions were not confirmed. On chromosome 21q, a cluster of markers within an approximately 9 cM interval: D21S1254, D21S65, D21S1440, and D21S1255 exhibited excess allele sharing (P = 0.041-0.008). Multilocus data on overlapping marker quartets, from D21S1265 to D21S1255, which were consistent with increased IBD sharing (P < 0.01, with a low of 0.0009), overlapped a broad interval of excess allele sharing reported previously, increasing support for a susceptibility locus for bipolar disorder on 21q.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1096-8628(19970531)74:3<254::aid-ajmg4>3.0.co;2-q | DOI Listing |
Cancers (Basel)
January 2025
Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.
Background: The phosphoinositide 3-kinase (PI3K) pathway is activated in multiple cancers. However, the significance of encoding the PI3K regulatory subunit, an inhibitor of the PI3K catalytic subunit encoded by , in ovarian cancer development is largely unknown.
Methods: Here, we investigated genomic alterations and gene expression by direct sequencing and qPCR methods in 197 ovarian cancers.
Foods
January 2025
Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria.
Ready-to-eat (RTE) foods are the most common sources of transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Plant Sciences, University of Bern, Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.
Abies alba Mill. is a prominent European tree species predominantly inhabiting cool and humid montane environments. However, paleoecological evidence reveals that during the Eemian and mid-Holocene, A.
View Article and Find Full Text PDFSci Rep
January 2025
Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
Despite the advances in paleogenomics, red cell blood group systems in ancient human populations remain scarcely known. Pioneer attempts showed that Neandertal and Denisova, two archaic hominid populations inhabiting Eurasia, expressed blood groups currently found in sub-Saharans and a rare "rhesus", part of which is found in Oceanians. Herein we fully pictured the blood group genetic diversity of 22 Homo sapiens and 14 Neandertals from Eurasia living between 120,000 and 20,000 years before present (yBP).
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343.
Eukaryotic genome size varies considerably, even among closely related species. The causes of this variation are unclear, but weak selection against supposedly costly "extra" genomic sequences has been central to the debate for over 50 years. The mutational hazard hypothesis, which focuses on the increased mutation rate to null alleles in superfluous sequences, is particularly influential, though challenging to test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!