Asynergic myocardial regions in patients with coronary artery disease can be viable. They may have the ability to improve their function after restoring coronary blood flow. Asynergic but viable myocardial regions have a positive inotropic reserve which can be stimulated by catecholamines. Because echocardiography is an established method for evaluating regional left ventricular function, it has the potential to detect the inotropic response of asynergic myocardial regions. In the clinical setting, prediction of left ventricular functional improvement after revascularization is particularly important. Dobutamine stress echocardiography is the most frequently used stress echocardiographic test for detection of myocardial viability. Dobutamine is infused at low rates of 2.5 to 20 micrograms.kg-1.min-1 to detect myocardial viability. This paper reports on the sensitivity and specificity of the method for the detection of viability and its usefulness for prediction of left ventricular functional improvement after revascularization.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/18.suppl_d.111DOI Listing

Publication Analysis

Top Keywords

myocardial viability
12
myocardial regions
12
left ventricular
12
detection myocardial
8
stress echocardiography
8
asynergic myocardial
8
prediction left
8
ventricular functional
8
functional improvement
8
improvement revascularization
8

Similar Publications

Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.

Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).

Chin J Nat Med

January 2025

Department of Pharmacy, The Fourth College of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China; Department of Pharmacy, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China. Electronic address:

Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD.

View Article and Find Full Text PDF

ACSL4 Regulates LPS-Induced Ferroptosis in Cardiomyocytes through FASN.

Ann Clin Lab Sci

November 2024

Emergency Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China

Objective: Myocardial injury is a prevalent complication of sepsis. This study aims to shed light on the role of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) in regulating Fatty Acid Synthase (FASN) to identify the intrinsic molecular mechanisms of sepsis-induced myocardial injury.

Method: H9c2 cells were treated with Lipopolysaccharide (LPS) to model sepsis-induced cardiomyocyte injury and were subsequently divided into seven groups: Control, LPS, LPS+sh-NC, LPS+sh-ACSL4, LPS+sh-ACSL4+Erastin, LPS+sh-ACSL4+oe-NC, and LPS+sh-ACSL4+oe-FASN.

View Article and Find Full Text PDF

Abietic Acid Alleviates the Hypoxic Injury of Cardiomyocytes by Adjusting Autophagy and Apoptosis Mediated by miR-30a-5p/GRP78 Axis.

Ann Clin Lab Sci

November 2024

Department of Internal Medicine-Cardiovascular, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China

Objective: To explore the influence of abietic acid on the autophagy and apoptosis of cardiomyocytes in rats with acute myocardial infarction (AMI).

Methods: A rat model of AMI was built by ligation of the anterior descending branch of left coronary artery, and a model of hypoxic cardiomyocyte injury was constructed by treating cardiomyocytes with hypoxia. Western blot assay was used to detect the abundance of proteins related to autophagy and apoptosis, MTT assay was used to measure the viability of cardiomyocytes, and the expression level of miR-30a-5p was detected by qRT-PCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!