The flux of multisized fluorescein-isothiocyanate-labeled hydroxy ethyl starch (FITC-HES) macromolecules was used to assess changes in barrier function of rat pulmonary microvascular endothelial cell (RPMVEC) monolayers exposed to protein phosphatase (PP) inhibitors or cGMP analogs and atriopeptin (ANF). Two potent PP inhibitors, calyculin A (CalA) and okadaic acid (OA), increased RPMVEC permeability in a dose- and time-dependent manner, and CalA had a higher intrinsic activity than OA. In contrast, ANF and potent cGMP analogs had no effect on basal RPMVEC permeability. The phosphohistone PP activity contained in RPMVEC sonicates was inhibited by OA with an inhibition profile that suggested at least two components were present, with PP2A accounting for approximately 70% of the OA-inhibitable phosphohistone phosphatase activity. Following separation with heparin-Sepharose chromatography, PP activity exhibited equipotent inhibition by CalA and differential inhibition by OA. Differential inhibition of PP1 and PP2A by OA suggested that PP1 is involved in regulating RPMVEC barrier function. Permeabilized RPMVEC showed increased phosphorylation of several proteins in the presence of phosphatase inhibitors. Treatment with KT 5926, a myosin light chain (MLC) kinase (MLCK) inhibitor, or rolipram, a phosphodiesterase inhibitor, decreased 32P incorporation into immunoprecipitated MLC by CalA and OA. However, this effect did not abolish either the CalA- or OA-induced decrease in the RPMVEC barrier function. Localization of filamentous (F) actin was at the periphery as well as in the cytoplasm and perinuclear region, whereas nonmuscle myosin was seen in the perinuclear region. Neither of these patterns was changed in the presence of CalA. Thus, cGMP does not alter RPMVEC permeability, but inhibition of PP activity results in loss of barrier function by a mechanism independent from MLC phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-4652(199706)171:3<259::AID-JCP4>3.0.CO;2-NDOI Listing

Publication Analysis

Top Keywords

barrier function
20
rpmvec permeability
12
function rat
8
rat pulmonary
8
pulmonary microvascular
8
microvascular endothelial
8
rpmvec
8
phosphatase inhibitors
8
cgmp analogs
8
anf potent
8

Similar Publications

Wheat Bread Supplemented with Egg Albumin: Structural Features, and In Vitro Starch and Protein Digestibility.

Plant Foods Hum Nutr

January 2025

Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana- Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX, 09340, Mexico.

This study aimed to explore the effects of egg albumin protein addition (5, 15 and 20 g/100 g db) on the textural characteristics, as well as in the in vitro digestibility of protein and starch of wheat bread. Egg albumin addition resulted in smoother bread loaves as compared to traditional wheat bread. Reduced hardness and increased cohesiveness were correlated to the protein secondary structure, mainly with the content of β-sheets.

View Article and Find Full Text PDF

Role of polyamines in intestinal mucosal barrier function.

Semin Immunopathol

January 2025

Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.

The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy.

View Article and Find Full Text PDF

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

This study aimed to evaluate the therapeutic efficacy of camellia oil on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice, as well as its effect on the expression of skin-barrier-related proteins. A mouse model of AD was created via topical application of DNCB; subsequently, the animals were randomly divided into four groups: the blank control (Control), model (Model), moisturizing cream (Moisturizer), and camellia oil (Camellia) groups. The Camellia group received camellia oil, whereas the Moisturizer group was treated with moisturizing cream, as a positive control.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!