Insulin modulation of the Na/H antiport of L-6 cells, from rat skeletal muscle was studied in both myoblasts and myotubes using the fluorescent, pH sensitive, intracellular probe 2',7' bis (carboxyethyl)-5(6)-carboxyfluorescein. Insulin stimulated the Na/H antiport activity in L-6 cells, showing a bell-shaped dose response typical of other insulin responses: a maximum at 10 nM (delta pH of 0.132 +/- 0.007 and 0.160 +/- 0.040 over basal value, for myoblasts and myotubes, respectively; means +/- SD, n = 6-8) and smaller effects at higher and lower concentrations. Phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, also stimulated the antiport in myoblasts but not in myotubes. Surprisingly the rapid increase in intracellular pH was not observed when insulin and PMA were added simultaneously to myoblasts; apparently these two activators mutually excluded each other. Downregulation of protein kinase C, obtained by preincubation of cells with PMA for 20 hr, totally abolished both hormone and PMA effects in myoblasts, whereas in myotubes insulin stimulation was not affected. Inhibitors of tyrosine kinase activity, such as erbstatin analog and genistein abolished insulin effect on the Na/H antiport, both in myoblasts and in myotubes. Different sensitivity to pertussis toxin in the two cell types suggests that the differentiation process leads to a change in the signal pathways involved in the physiological response to insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-4652(199706)171:3<235::AID-JCP1>3.0.CO;2-PDOI Listing

Publication Analysis

Top Keywords

myoblasts myotubes
24
na/h antiport
16
l-6 cells
12
insulin
8
insulin stimulation
8
antiport l-6
8
myotubes insulin
8
protein kinase
8
antiport myoblasts
8
myoblasts
7

Similar Publications

Endoplasmic reticulum (ER) plasticity and ER-phagy are intertwined processes essential for maintaining ER dynamics. We investigated the interplay between two isoforms of the ER-phagy receptor FAM134B in regulating ER remodeling in differentiating myoblasts. During myogenesis, the canonical FAM134B1 is degraded, while its isoform FAM134B2 is transcriptionally upregulated.

View Article and Find Full Text PDF

Dioixn-like effects of an emerging contaminant 1,3,6,8-tetrabromocarbazole on the myogenic differentiation of mouse C2C12 cells.

Environ Res

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

1,3,6,8-Tetrabromocarbazole (1368-BCZ) has been proposed as an emerging environmental contaminant which has aryl hydrocarbon receptor (AhR) activating properties analogous to those of dioxins. Skeletal muscle development is a critical target of dioxin toxicity. However, the impact of 1368-BCZ on muscle development is inadequately understood.

View Article and Find Full Text PDF

Skeletal muscle has an important role in whole body energy metabolism and various proteases are involved in skeletal muscle functions. We have previously identified the cysteine protease legumain in cultured human skeletal muscle cells. However, the potential role of legumain in regulation of energy metabolism remains unexplored.

View Article and Find Full Text PDF

The Mitochondrial Lactate Oxidation Complex: endpoint for carbohydrate carbon disposal.

Am J Physiol Endocrinol Metab

December 2024

Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.

The Lactate Shuttle concept has revolutionized our understanding and study of metabolism in physiology, biochemistry, metabolism, nutrition, and medicine. Seminal findings of the Mitochondrial Lactate Oxidation Complex (mLOC) elucidated the architectural structure of its components. Here, we report that the mitochondrial pyruvate carrier (mPC) is an additional member of the mLOC in mouse muscle and C2C12 myoblasts and myotubes.

View Article and Find Full Text PDF

Mll4 in skeletal muscle fibers maintains muscle stem cells.

Skelet Muscle

December 2024

School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

Background: Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Epigenetic modifications in skeletal muscle play a significant role in influencing the niche and cellular states of MuSCs. Mixed-lineage leukemia 4 (Mll4) is a histone methyltransferase critical for activating the transcription of various target genes and is highly expressed in skeletal muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!