1. The modulatory actions of nociceptin/orphanin FQ on excitatory synaptic transmission were studied in superficial dorsal horn neurones in transverse slices from 7 to 14 day old rats. 2. Glutamatergic excitatory postsynaptic currents (e.p.s.cs) were recorded from the somata of the neurones in the whole-cell patch-clamp configuration. E.p.s.cs were evoked by extracellular electrical stimulation (100 microns, 3-10 V) of the ipsilateral dorsal root entry zone by use of a glass electrode. E.p.s.cs with constant short latency (< 2.3 ms) and with no failures upon stimulation were assumed to be monosynaptic. These e.p.s.cs occurred with an average latency of 1.72 +/- 0.098 ms and exhibited a fast decay with a time constant, tau, of 4.8 +/- 0.53 ms (n = 30). 3. Nociceptin reversibly reduced the amplitudes of e.p.s.cs in a concentration-dependent manner in 25 out of 27 cells tested. Average maximum inhibition was 51.6 +/- 5.7% (mean +/- s.e.mean; n = 9), at concentrations > 3 microM. EC30 was 485 +/- 47 nM and the Hill coefficient was 1.29 +/- 0.09. 4. Inhibition of synaptic transmission by nociceptin (10 microM) was insensitive to the non-specific opioid receptor antagonist naloxone (10 microM) indicating that nociceptin did not act via classical opioid receptors. 5. In order to determine the site of action of nociceptin spontaneous miniature e.p.s.cs (m-e.p.s.cs) were recorded. Nociceptin reduced the frequency of m-e.p.s.cs in 6 out of 7 cells but had no effect on their amplitude distribution or on their time course. These findings suggest a pre- rather than a postsynaptic modulatory site of action. This is in line with the finding that current responses elicited by extracellular application of L-glutamate (10 microM) were not affected by nociceptin (10 microM; n = 7). 6. No positive correlation was found between the degree of inhibition by nociceptin (10 microM) and by the mixed delta- and mu-receptor agonist methionine-enkephalin (10 microM). This suggests that both neuropeptides acted on different but perhaps overlapping populations of synaptic connections. 7. Our results indicate that nociceptin inhibits excitatory synaptic transmission in the superficial layers of the rat dorsal horn by acting on presynaptic, presumably ORL1 receptors. This may be an important mechanism for spinal sensory information processing including nociception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564705PMC
http://dx.doi.org/10.1038/sj.bjp.0701149DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
16
excitatory synaptic
12
dorsal horn
12
nociceptin microm
12
nociceptin
9
transmission nociceptin
8
superficial dorsal
8
horn neurones
8
site action
8
microm
7

Similar Publications

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

Cytoplasmic dynein is essential in motoneurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein's function on the postsynaptic side of the circuit. Here we report distinct postsynaptic roles for dynein at neuromuscular junctions (NMJs).

View Article and Find Full Text PDF

Functional properties of aged hypothalamic cells.

Vitam Horm

January 2025

Department Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia. Electronic address:

The hypothalamus, in addition to controlling the main body's vital functions, is also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular pathways, including Ca signaling and neuronal excitability in the brain. Intrinsic electrophysiological properties of individual neurons and synaptic transmission between cells is disrupted in the central nervous system of old animals.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

BoNT/Action beyond neurons.

Toxicon

January 2025

National Research Council of Italy, Institute of Biochemistry and Cell Biology, 00015, Monterotondo, RM, Italy. Electronic address:

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!