Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia.

Proc Natl Acad Sci U S A

Department of Pediatrics, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.

Published: June 1997

Activation of myocardial A1 adenosine receptors (A1AR) protects the heart from ischemic injury. In this study transgenic mice were created using the cardiac-specific alpha-myosin heavy chain promoter and rat A1AR cDNA. Heart membranes from two transgene positive lines displayed approximately 1,000-fold overexpression of A1AR (6,574 +/- 965 and 10,691 +/- 1,002 fmol per mg of protein vs. 8 +/- 5 fmol per mg of protein in control hearts). Compared with control hearts, transgenic Langendorff-perfused hearts had a significantly lower intrinsic heart rate (248 beats per min vs. 318 beats per min, P < 0. 05), lower developed tension (1.2 g vs. 1.6 g, P < 0.05), and similar coronary resistance. The difference in developed tension was eliminated by pacing. Injury of control hearts during global ischemia, indexed by time-to-ischemic contracture, was accelerated by blocking adenosine receptors with 50 microM 8-(p-sulfophenyl) theophylline but was unaffected by addition of 20 nM N6-cyclopentyladenosine, an A1AR agonist. Thus A1ARs in ischemic myocardium are presumably saturated by endogenous adenosine. Overexpressing myocardial A1ARs increased time-to-ischemic contracture and improved functional recovery during reperfusion. The data indicate that A1AR activation by endogenous adenosine affords protection during ischemia, but that the response is limited by A1AR number in murine myocardium. Overexpression of A1AR affords additional protection. These data support the concept that genetic manipulation of A1AR expression may improve myocardial tolerance to ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21086PMC
http://dx.doi.org/10.1073/pnas.94.12.6541DOI Listing

Publication Analysis

Top Keywords

control hearts
12
adenosine receptors
8
a1ar
8
overexpression a1ar
8
fmol protein
8
beats min
8
developed tension
8
time-to-ischemic contracture
8
endogenous adenosine
8
transgenic adenosine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!