Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The synaptic membrane proteins synaptobrevin, syntaxin, and SNAP-25 form a ternary complex that can be disassembled by the ATPase N-ethylmaleimide-sensitive factor (NSF) in the presence of soluble cofactors (SNAP proteins). These steps are thought to represent molecular events involved in docking and subsequent exocytosis of synaptic vesicles. Using two independent and complementary approaches, we now report that such ternary complexes form in the membrane of highly purified and monodisperse synaptic vesicles in the absence of the plasma membrane. Furthermore, the complexes are reversibly dissociated by NSF and SNAP proteins. Thus, ternary complexes can be assembled and disassembled while all three proteins are anchored as neighbors in the same membrane, suggesting that NSF is involved in priming synaptic vesicles for exocytosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21026 | PMC |
http://dx.doi.org/10.1073/pnas.94.12.6197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!