Vascular smooth muscle cells (VSMC) contribute to the pathophysiology of hypertension through cell growth and contraction, and phospholipase C (PLC) is a critical effector enzyme in growth factor and vasoconstrictor signaling. There is indirect evidence that angiotensin II (ANG II) receptors are linked to the PLC-beta isoform signaling pathways. However, recent studies suggest that PLC-beta isoforms may not be expressed in VSMC. Our data demonstrate that in human aortic VSMC, PLC-beta 1 and PLC-gamma 1 proteins were detected by immunoblot analysis, and PLC-beta 1 mRNA was identified by reverse transcriptase-polymerase chain reaction in rat aortic VSMC. Incubation of permeabilized VSMC with anti-PLC-beta 1 or anti-Gq alpha antibodies inhibited ANG II-dependent inositol polyphosphate (IP) formation, while anti-PLC-gamma 1 antibodies did not inhibit ANG II-regulated IP formation. Conversely, anti-PLC-gamma 1 antibodies completely abolished platelet-derived growth factor (PDGF)-dependent IP generation, whereas anti-PLC-beta 1 antibodies had no effect on PDGF-induced PLC activation. Inhibition of tyrosine phosphorylation with genistein or herbimycin A did not diminish ANG II-stimulated IP formation or cytosolic free Ca2+ concentration transients, thereby confirming that ANG II signals via a PLC-gamma 1-independent mechanism. In summary, PLC-beta 1 and PLC-gamma 1 are expressed in human aortic VSMC, and PLC-beta 1 is the isoform that is critical for ANG II-regulated PLC signaling in these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1997.272.5.C1558DOI Listing

Publication Analysis

Top Keywords

aortic vsmc
12
vascular smooth
8
smooth muscle
8
muscle cells
8
growth factor
8
plc-beta isoform
8
human aortic
8
vsmc plc-beta
8
plc-beta plc-gamma
8
anti-plc-gamma antibodies
8

Similar Publications

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.

View Article and Find Full Text PDF

Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.

View Article and Find Full Text PDF

Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation.

View Article and Find Full Text PDF

Runx2-NLRP3 Axis Orchestrates Matrix Stiffness-evoked Vascular Smooth Muscle Cell Inflammation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.

Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!