CAG repeat expansion in the Huntington's disease gene (HD) was examined in postmortem brains from 310 clinically diagnosed and 15 'at risk' individuals. Presence of an expanded CAG allele (>37 units) was the cause of the disorder in almost all cases (307 of 310). Despite a diversity of reporting clinicians, neurological and psychiatric onset and age at death all displayed significant inverse correlations with CAG number indicating that diagnosis of onset is reasonably accurate, and that most patients die from the disease and its complications. Neuronal changes before clinical onset are not detected by conventional microscopic examination as three out of 15 'at risk' brains had an expanded CAG allele but no neuropathology. The cause of HD-like neuropathology in three exceptional brains from clinically diagnosed individuals is unclear. The disorder in these cases could be an HD phenocopy or result from alternative mutational mechanisms at the HD locus.

Download full-text PDF

Source
http://dx.doi.org/10.1006/nbdi.1994.0019DOI Listing

Publication Analysis

Top Keywords

huntington's disease
8
clinically diagnosed
8
'at risk'
8
expanded cag
8
cag allele
8
disorder cases
8
cag
5
disease cag
4
cag trinucleotide
4
trinucleotide repeats
4

Similar Publications

Roles of SIRT3 in cardiovascular and neurodegenerative diseases.

Ageing Res Rev

January 2025

Department of Cardiovascular Center, TheFirst Hospital of Jilin University, Changchun,Jilin, China.

Sirtuin-3 (SIRT3) in mitochondria has nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase activity. As such, SIRT3 is crucial in cardiovascular and neurodegenerative diseases. Advanced proteomics and transcriptomics studies have revealed that SIRT3 expression becomes altered when the heart or brain is affected by external stimuli or disease, such as diabetic cardiomyopathy, atherosclerosis, myocardial infarction, Alzheimer's disease, Huntington's disease, and Parkinson's disease.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is an autosomal dominant condition causing severe neurodegeneration in the striatum and the entorhinal cortex (EC). An epigenome wide association study of DNA methylation in HD by our group, identified potential hypomethylation at the PTGDS gene in the striatum. We aimed to validate this result through pyrosequencing, examining the locus in fine detail, and to assess the signal specificity by profiling multiple neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a progressive neurodegenerative disorder phenotypically manifested by motor, cognitive and psychiatric symptoms (Novak and Tabrizi, 2011). These patients are also characterized by vigilance abnormalities. This has been demonstrated by electrophysiological measures (Wiegand et al.

View Article and Find Full Text PDF

Background: Parkinson's disease and Huntington's disease are both neurodegenerative conditions involving the basal ganglia area of the brain. Both conditions can cause symptoms that affect movement. Cognitive decline or dementia can also occur in both.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!