The formation and stability of structural elements in two 5S rRNA molecules from wheat germ (WG) and lupin seeds (LS) as a function of Mg2+ concentration in solution was determined using the adiabatic differential scanning microcalorimetry (DSC). The experimentally determined thermodynamic parameters are compared with calculations using thermodynamic databases used for prediction of RNA structure. The 5S rRNA molecules which show minor differences in the nucleotide sequence display very different thermal unfolding profiles (DSC profiles). Numerical deconvolution of DSC profiles provided information about structural transformations that take place in both 5S rRNA molecules. A comparative analysis of DSC data and the theoretical thermodynamic models of the structure was used to establish a relationship between the constituting transitions found in the melting profiles and the unfolding of structural domains of the 5S rRNA and stability of its particular helical elements. Increased concentrations of Mg2+ ions induces additional internal interactions stabilising 5S rRNA structures found at low Na+ concentrations. Observed conformational transitions suggest a structural model in which the extension of helical region E dominates over the postulated tertiary interaction between hairpin loops. We propose that helix E is stabilised by a sequence of non-standard pairings extending this helix by the formation of tetra loop e and an almost total reduction of loop d between helices E and D. Two hairpin structures in both 5S rRNA molecules: the extended C-C' and the extended E-E'-E" hairpins appear as the most stable elements of the structure. The cooperativity of the unfolding of helixes in these 5S rRNA molecules changes already at 2 mM Mg2+.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.1997.10508148 | DOI Listing |
Pathogens
January 2025
Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
Pneumonia caused by infection (PCP) is a potentially life-threatening illness, particularly affecting the immunocompromised. The past two decades have shown an increase in PCP incidence; however, the underlying factors that promote disease severity and fatality have yet to be fully elucidated. Recent evidence suggests that the microbiota of the respiratory tract may play a role in stimulating or repressing pulmonary inflammation, as well as the progression of both bacterial and viral pneumonia.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Departamento de Agronomía, Universidad Nacional José Faustino Sánchez Carrión (UNJFSC), Lima 15136, Peru.
Bioremediation induced by bacteria offers a promising alternative for the contamination of aromatic hydrocarbons due to their metabolic processes suitable for the removal of these pollutants, as many of them are carcinogenic molecules and dangerous to human health. Our research focused on isolating a bacterium from the rhizosphere of the tara tree with the ability to degrade polycyclic aromatic hydrocarbons, using draft genomic sequencing and computational analysis. sp.
View Article and Find Full Text PDFToxics
January 2025
School of Computer Science and Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China.
Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.
View Article and Find Full Text PDFFront Immunol
January 2025
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.
Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).
Prep Biochem Biotechnol
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India.
Halophilic bacteria are promising candidates for biofuel production because of their efficient cellulose degradation. Their cellulases exhibit high activity, even in the presence of inhibitors and under extreme conditions, making them ideal for biorefinery applications. In this study, we isolated a strain of (Kadal6) from decomposed cotton cloth on a Rameshwaram seashore.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!