Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria.

Appl Environ Microbiol

Department of Molecular and Cell Biology, University of Aberdeen, Foresterhill, United Kingdom.

Published: June 1997

The speed of recovery of cell suspensions and biofilm populations of the ammonia oxidizer Nitrosomonas europaea, following starvation was determined. Stationary-phase cells, washed and resuspended in ammoniumfree inorganic medium, were starved for periods of up to 42 days, after which the medium was supplemented with ammonium and subsequent growth was monitored by measuring nitrite concentration changes. Cultures exhibited a lag phase prior to exponential nitrite production, which increased from 8.72 h (no starvation) to 153 h after starvation for 42 days. Biofilm populations of N. europaea colonizing sand or soil particles in continuous-flow, fixed column reactors were starved by continuous supply of ammonium-free medium. Following resupply of ammonium, starved biofilms exhibited no lag phase prior to nitrite production, even after starvation for 43.2 days, although there was evidence of cell loss during starvation. Biofilm formation will therefore provide a significant ecological advantage for ammonia oxidizers in natural environments in which the substrate supply is intermittent. Cell density-dependent phenomena in a number of gram-negative bacteria are mediated by N-acyl homoserine lactones (AHL), including N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). Addition of both ammonium and OHHL to cell suspensions starved for 28 days decreased the lag phase in a concentration-dependent manner from 53.4 h to a minimum of 10.8 h. AHL production by N. europaea was detected by using a luxR-luxAB AHL reporter system. The results suggest that rapid recovery of high-density biofilm populations may be due to production and accumulation of OHHL to levels not possible in relatively low-density cell suspensions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC168521PMC
http://dx.doi.org/10.1128/aem.63.6.2281-2286.1997DOI Listing

Publication Analysis

Top Keywords

biofilm populations
16
cell suspensions
12
lag phase
12
exhibited lag
8
phase prior
8
nitrite production
8
cell
6
starved
5
biofilm
5
starvation
5

Similar Publications

Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.

View Article and Find Full Text PDF

Unlabelled: Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

spp. in neonatal sepsis: an urgent global threat.

Front Antibiot

September 2024

Institute of Infection & Immunity, St George's, University of London, London, United Kingdom.

Neonatal sepsis causes substantial morbidity and mortality, the burden of which is carried by low-income countries (LICs). The emergence of multidrug-resistant pathogens in vulnerable neonatal populations poses an urgent threat to infant survival. spp.

View Article and Find Full Text PDF

Aims: To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry, - a "global high-risk" clonal strain.

Methods And Results: Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n=87) and healthy chicks (n=11) in Georgia, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!