Expression of tyrosine hydroxylase in newly differentiated neurons from a human cell line (hNT).

Neuroreport

Department of Neurobiology and Anatomy, Medical College of Pennsylvania, Philadelphia 19102, USA.

Published: April 1997

Previous studies have demonstrated that the synergistic interaction of acidic fibroblast growth factor (aFGF) and a number of co-activator molecules (dopamine, TPA, IBMX/forskolin) can induce the novel expression of the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) in non-TH-expressing neurons. To date, TH gene induction has been achieved only in cultures of primary brain neurons. In the present study, we investigated whether TH expression could similarly be induced in a cell line derived from human teratocarcinoma cells. Treatment with aFGF and its co-activators resulted in the prolonged expression of TH in newly differentiating human neurons (hNT) but not in their undifferentiated precursors (NT2). These findings suggest that hNTs may serve as a continual source of TH-expressing neurons for cell transplantation and developmental studies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-199704140-00029DOI Listing

Publication Analysis

Top Keywords

tyrosine hydroxylase
8
neurons
5
expression
4
expression tyrosine
4
hydroxylase newly
4
newly differentiated
4
differentiated neurons
4
neurons human
4
human cell
4
cell hnt
4

Similar Publications

Objective: Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative disease characterized by tangles of hyperphosphorylated tau protein and tufted astrocytes. Developing treatments for PSP is challenging due to the lack of disease models reproducing its key pathological features. This study aimed to model sporadic PSP-Richardson's syndrome (PSP-RS) using multi-donor midbrain organoids (MOs).

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Microbial synthesis of m-tyrosine via whole-cell biocatalysis.

Enzyme Microb Technol

January 2025

Biotechnology Program, Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, United States. Electronic address:

Meta-tyrosine (m-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of m-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of m-tyrosine by establishing the in vivo enzyme activity of phenylalanine 3-hydroxylase (PacX from Streptomyces coeruleoribudus) in E.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!