The Escherichia coli histone-like protein HU affects DNA initiation, chromosome partitioning via MukB, and cell division via MinCDE.

J Bacteriol

Institut Jacques Monod (Centre National de la Recherche Scientifique, Universite Paris 7), France.

Published: June 1997

Escherichia coli hupA hupB double mutants, lacking both subunits (HU1 and HU2) of the histone-like protein HU, accumulate secondary mutations. In some genetic backgrounds, these include mutations in the minCDE operon, inactivating this system of septation control and resulting in the formation of minicells. In the course of the characterization of hupA hupB mutants, we observed that the simultaneous absence of the HU2 subunit and the MukB protein, implicated in chromosome partitioning, is lethal for the bacteria; the integrity of either HU or MukB thus seems to be essential for bacterial growth. The HU protein has been shown to be involved in DNA replication in vitro; we show here that its inactivation in the hupA hupB double mutant disturbs the synchrony of replication initiation in vivo, as evaluated by flow cytometry. Our results suggest that global nucleoid structure, determined in part by the histone-like protein HU, plays a role in DNA replication initiation, in proper chromosome partitioning directed by the MukFEB proteins, and in correct septum placement directed by the MinCDE proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC179140PMC
http://dx.doi.org/10.1128/jb.179.11.3494-3499.1997DOI Listing

Publication Analysis

Top Keywords

histone-like protein
12
chromosome partitioning
12
hupa hupb
12
escherichia coli
8
hupb double
8
dna replication
8
replication initiation
8
protein
5
coli histone-like
4
protein dna
4

Similar Publications

Phosphorylation of the prokaryotic histone-like protein H-NS modulates bacterial virulence in Salmonella Typhimurium.

Microbiol Res

December 2024

Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China. Electronic address:

H-NS is a prokaryotic histone-like protein that binds to bacterial chromosomal DNA with important regulatory roles in gene expression. Unlike histone proteins, hitherto post-translational modifications of H-NS are still largely uncharacterized, especially in bacterial pathogens. Salmonella Typhimurium is a primary enteric pathogen and its virulence is mainly dependent on specialized type III secretion systems (T3SSs), which were evolutionarily acquired via horizontal gene transfer.

View Article and Find Full Text PDF

In eukaryotes, accurate chromosome segregation during cell division relies on the centromeric histone H3 variant, CENH3. Our previous work identified KINETOCHORE NULL2 (αKNL2) as a plant CENH3 assembly factor, which contains a centromere-targeting motif, CENPC-k, analogous to the CENPC motif found in CENP-C. We also demonstrated that αKNL2 can bind DNA in vitro in a sequence-independent manner, without the involvement of its CENPC-k motif.

View Article and Find Full Text PDF

Haplotype diversity and phylogeny within Alternaria alternata and A. arborescens species complexes from tomatoes.

Fungal Biol

December 2024

University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France. Electronic address:

Tomato (Solanum lycopersicum L.) is an economically important vegetable susceptible to various fungal diseases, including leaf spot caused by Alternaria spp. from the section Alternaria.

View Article and Find Full Text PDF
Article Synopsis
  • MucR is a transcriptional regulator found in Brucella species that influences gene expression related to virulence by binding to AT-rich DNA regions.
  • MucR is part of the Ros/MucR family in α-proteobacteria and shares functional similarities with H-NS proteins, although they lack sequence homology.
  • This study uses cryo-EM and other methods to reveal that MucR and its homolog Ml5 form a unique circular structure that can condense DNA, linking nucleoid structure to transcription regulation.
View Article and Find Full Text PDF
Article Synopsis
  • - Vibrio parahaemolyticus has two flagellar systems: a polar flagellum for swimming and lateral flagella for swarming on surfaces; H-NS, a regulatory protein, influences both types of motility.
  • - Deleting the hns gene reduces the growth rate of V. parahaemolyticus and significantly decreases its swimming ability during the logarithmic growth phase.
  • - H-NS activates various polar flagellar gene expressions, which enhances swimming motility, suggesting that H-NS plays a crucial role in regulating bacterial growth and flagellar function.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!