A new bioabsorbable composite sheet was developed to provide a substitute for the dura mater and was evaluated histologically and biomechanically using rats and rabbits. This composite, composed of two L-lactic acid-epsilon-caprolactone (50% L-lactic acid, 50% epsilon-caprolactone) copolymer films and a poly(glycolic acid) nonwoven fabric, displayed good mechanical properties and was completely absorbed 24 weeks after implantation in the back of rats. Histological evaluation of the composite sheet was undertaken by implanting it in 31 rabbits with dural defects and examining the sites of implantation 2 weeks to 26 months later. No infection, cerebrospinal fluid leakage, evidence of convulsive disorders, significant adhesion to underlying cortex, or calcification was noticed in any cases. In addition, the regenerated duralike tissue had a high pressure-resistant strength 2 weeks after implantation. The authors conclude that this new bioabsorbable composite sheet can be successfully used as a dural substitute.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/jns.1997.86.6.1012 | DOI Listing |
Mass Spectrom (Tokyo)
January 2025
JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan.
Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes.
View Article and Find Full Text PDFMalar J
January 2025
Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea.
Background: The Plasmodium proteasome emerges as a promising target for anti-malarial drug development due to its potential activity against multiple life cycle stages.
Methods: In this investigation, a comparative analysis was conducted on the structural features of the β5 subunit in the 20S proteasomes of both Plasmodium and humans.
Results: The findings underscore the structural diversity inherent in both proteasomes.
Nanoscale
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
Homogeneous mixtures undergo phase separation to generate rich heterogeneous structures as well as enable complex physiological activity and delicate design of artificial materials. Beyond free space, the strong coupling between migrating components and spatial confinement plays a crucial role in determining the essential spatial compartment of phase separation, warranting further continuous exploration. Herein, we report the selective phase separation (SPS) behavior of polymers under a mobile two-dimensional (2D) confinement by graphene oxide (GO) sheets.
View Article and Find Full Text PDFBMC Chem
January 2025
Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
Water is one of the vital needs of life. However, due to rapid industrialization, urbanization and lack of awareness, the world population now facing the threat of water shortage. To ensure that future living conditions are preserved, it is crucial to reduce water pollution and protect the ecosystem.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
This study presents a novel nanostructured material formed by inserting oxidized carbon nanohorns (CNHox) between layered graphene oxide (GO) nanosheets using metal ions (M) from nitrate as intermediates. The resulting GO-CNHox-M structure effectively mitigated interlayer aggregation of the GO nanosheets. This insertion strategy promoted the formation of nanowindows on the surface of the GO sheets and larger mesopores between the GO nanosheets, improving material porosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!