Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism.

J Clin Invest

Unidad de Neuroanatomía del Instituto Cajal, Consejo Superior de Investigaciones Científicas and Facultad de Medicina de la Universidad Autónoma de Madrid, 28002 Madrid, Spain.

Published: June 1997

AI Article Synopsis

  • The most severe brain damage from thyroid issues during development is seen in neurological cretins from iodine-deficient areas, with irreversible effects linked to low maternal thyroid hormones before mid-gestation.
  • Experiments on rats showed that low iodine diets and methimazole treatment resulted in decreased thyroid hormone levels in the fetuses' brains.
  • The findings indicate that both low iodine and the goitrogen treatment hinder the maturation of glial cells in the hippocampus, which is crucial for neuronal development, reflecting issues seen in cretinism.

Article Abstract

The most severe brain damage associated with thyroid dysfunction during development is observed in neurological cretins from areas with marked iodine deficiency. The damage is irreversible by birth and related to maternal hypothyroxinemia before mid gestation. However, direct evidence of this etiopathogenic mechanism is lacking. Rats were fed diets with a very low iodine content (LID), or LID supplemented with KI. Other rats were fed the breeding diet with a normal iodine content plus a goitrogen, methimazole (MMI). The concentrations of -thyroxine (T4) and 3,5,3'triiodo--thyronine (T3) were determined in the brain of 21-d-old fetuses. The proportion of radial glial cell fibers expressing nestin and glial fibrillary acidic protein was determined in the CA1 region of the hippocampus. T4 and T3 were decreased in the brain of the LID and MMI fetuses, as compared to their respective controls. The number of immature glial cell fibers, expressing nestin, was not affected, but the proportion of mature glial cell fibers, expressing glial fibrillary acidic protein, was significantly decreased by both LID and MMI treatment of the dams. These results show impaired maturation of cells involved in neuronal migration in the hippocampus, a region known to be affected in cretinism, at a stage of development equivalent to mid gestation in humans. The impairment is related to fetal cerebral thyroid hormone deficiency during a period of development when maternal thyroxinemia is believed to play an important role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC508116PMC
http://dx.doi.org/10.1172/JCI119459DOI Listing

Publication Analysis

Top Keywords

glial cell
12
cell fibers
12
fibers expressing
12
iodine deficiency
8
radial glial
8
mid gestation
8
rats fed
8
iodine content
8
expressing nestin
8
glial fibrillary
8

Similar Publications

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.

View Article and Find Full Text PDF

Distribution analysis of RAB11A and RAB11B, small GTP-binding proteins, in mice.

Mol Biol Rep

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.

Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.

View Article and Find Full Text PDF

In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies.

View Article and Find Full Text PDF

Despite tremendous progress in characterizing the myriad cellular structures in the nervous system, a full appreciation of the interdependent and intricate interactions between these structures is as yet unfulfilled. Indeed, few more so than the interaction between the myelin internode and its ensheathed axon. More than a half-century after the ultrastructural characterization of this axomyelin unit, we lack a reliable understanding of the physiological properties, the significance and consequence of pathobiological processes, and the means to gauge success or failure of interventions designed to mitigate disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!