It has now become possible to study the functional state of the pilots and to appraise their performance capacity by using a complex set of equipment. During the pilot's operation this equipment provides for obtaining electrocardiograms, information on the heart rate, respiration rate, maximum arterial pressure measured on the finger, skin temperature at 4 points, ambient temperature, taking electromyograms, registering dermato-galvanic reactions after Tarkhanov and the rate of the reaction in response to light and sound. In addition to the mentioned data it is also possible to study during off-duty time the electroencephalogram in 2 leads, arterial pressure after Korotkov, dynamogram, critical fusion frequency, as well as data on the coordination of movements and thresholds of audio-sensitivity. The possibilty of using the described apparatus with other electric facilities will enable it to broaden the field of its application, up to an including its utilization in large-scale examinations of the population, occupational examinations and occupational screening.

Download full-text PDF

Source

Publication Analysis

Top Keywords

functional state
8
arterial pressure
8
[apparatus medico-physiologic
4
medico-physiologic studies
4
studies functional
4
state work
4
work capacity
4
capacity civil
4
civil aviation
4
aviation pilots]
4

Similar Publications

Aim: The aim of this study is to assess associated cerebral supratentorial anomalies in patients who underwent myelomeningocele repair in hopes of developing a better morphological apprehension of the forebrain's anomalies in this category of patients.

Material And Methods: This retrospective observational study assessed 426 pediatric patients who underwent myelomeningocele repair between January 2013 and December 2020. Cranial MRIs with T1- and T2-weighted sequences were obtained as part of the postoperative assessment to determine the presence of associated supratentorial anomalies in pediatric patients following myelomeningocele repair.

View Article and Find Full Text PDF

Establishing the protein-protein interaction network sheds light on functional genomics studies by providing insights from known counterparts. However, the rice interactome has barely been studied due to the lack of massive, reliable, and cost-effective methodologies. Here, the development of a barcode-indexed PCR coupled with HiFi long-read sequencing pipeline (BIP-seq) is reported for high throughput Protein Protein Interaction (PPI)identification.

View Article and Find Full Text PDF

Bacterial infections, particularly those caused by drug-resistant bacteria, represent a pressing global health challenge. During the interaction between pathogen infection and host defense, bacterial infections initiate the host's immune response, which involves the activation of proteases that play a critical role in antibacterial defense. Granzyme B (GzmB), a key immune-related biomarker associated with cytotoxic T lymphocytes (CTLs), plays a pivotal role in this process.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!