Determination of total mercury in estuary, lake and river sediments.

Cent Eur J Public Health

Laboratory of General Toxicology and Environment, Faculty of Pharmacy, Strasbourg, France.

Published: July 1997

In order to improve the quality of the results in sediment analysis, the Community Bureau of Reference (BCR) of the European Communities has developed 3 sediment reference materials (CRM) from estuarine, lake and river origins. Certification of mercury content in these materials was achieved by 3 methods (cold vapor atomic absorption spectrometry, plasma emission spectrometry, neutron activation analysis with radiochemical separation). The values finally certified in the CRM estuarine, lake and river sediments are 1.77 +/- 0.06, 0.67 +/- 0.02, 1.03 +/- 0.13 mg/kg respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lake river
12
river sediments
8
crm estuarine
8
estuarine lake
8
determination total
4
total mercury
4
mercury estuary
4
estuary lake
4
sediments order
4
order improve
4

Similar Publications

Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg.

View Article and Find Full Text PDF

How hydrodynamic conditions drive the regime shift towards a bacterial state with lower carbon emissions in river bends.

Environ Res

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.

Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.

View Article and Find Full Text PDF

Drivers analysis and future scenario-based predictions of nutrient loads in key lakes and reservoirs of the Yangtze River Catchment.

J Environ Manage

January 2025

State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:

The excessive nutrient loading in lakes and reservoirs poses significant threats to water quality and ecological health, especially under the influence of global climate change and intensified human activities. This study focuses on the long-term trends in nutrient content and ratios, as well as their driving factors in six major lakes and reservoirs (Chaohu Lake, Danjiangkou Reservoir, Dianchi Lake, Dongtinghu Lake, Poyanghu Lake, and Taihu Lake) within the Yangtze River Catchment from 2002 to 2021. Utilizing Redundancy Analysis, Random Forest and Generalized Additive Model, we identify the shifts in natural and socio-economic factors influencing nutrient concentrations and predict future trends under various scenarios.

View Article and Find Full Text PDF

Microplastics (MPs) are a growing environmental issue because of their widespread prevalence and their long-term effects on ecosystems and human health. Global studies have identified MPs in various aquatic environments, such as lake, rivers, estuaries, wastewater, and oceans. Although most MPs originate from urban surface water sources, the specific intensity, characteristics, and associated risk assessments remain unclear.

View Article and Find Full Text PDF

In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!