Glucocorticoids and mineralocorticoids have distinct in vivo roles despite close structural homology and similarities in vitro. Known mechanisms of specificity focus on factors extrinsic to the receptor; interactions that directly regulate the receptor to confer specificity are less well understood, particularly for the mineralocorticoid receptor (MR). To examine relative MR vs. glucocorticoid receptor (GR) function in a more physiological context, we compared transactivation by GR and MR in the standard experimental fibroblast CV-1 cell line, the renal epithelial LLC-PK1 line, and neuronal medullary raphe RN33B cells. Maximal transactivational activity mediated by MR, relative to that mediated by GR, is enhanced in both of these cell lines and is primarily conferred by an N-terminal-mediated enhancement of the MR response. In addition, the ligand concentration required for maximal transcriptional activity of the GR varies significantly between cell lines. This is independent of binding affinity or 11beta-hydroxysteroid dehydrogenase-mediated inactivation and may contribute to in vivo tissue-specific differences in responses to the GR. Although ligand binding affinity is clearly conferred by the LBD, receptor-specific variations between cell lines in transcriptional sensitivity to ligand appear, rather, to be associated with the N-terminus. These studies demonstrate that the specificity of the MR vs. the GR response may be mediated via unique cellular factors, as well as suggesting a novel means of expanding the cellular response to cortisol.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.138.6.5214DOI Listing

Publication Analysis

Top Keywords

cell lines
12
glucocorticoid receptor
8
binding affinity
8
receptor
5
determinants specificity
4
specificity transactivation
4
transactivation mineralocorticoid
4
mineralocorticoid glucocorticoid
4
receptor glucocorticoids
4
glucocorticoids mineralocorticoids
4

Similar Publications

Efficient synthesis of coumarin based triazole linked O-glycoconjugates as new bio-active glycohybrids.

Carbohydr Res

January 2025

Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. Electronic address:

Glycohybrids are biologically significant molecules with variety of biological functions and are found as structural motifs in numerous natural products. Here, we report the synthesis of various new coumarin-based O-glycoconjugates as glycohybrids that are chirally enriched and bridged by 1,2,3-triazoles ring system. The1,2,3-triazoles bridging was done via CuAAC click-chemistry.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!