The voltage activated K+ channel (Kv1.3) has recently been identified as the molecule that sets the resting membrane potential of peripheral human T lymphoid cells. In vitro studies indicate that blockage of Kv1.3 inhibits T cell activation, suggesting that Kv1.3 may be a target for immunosuppression. However, despite the in vitro evidence, there has been no in vivo demonstration that blockade of Kv1.3 will attenuate an immune response. The difficulty is due to species differences, as the channel does not set the membrane potential in rodent peripheral T cells. In this study, we show that the channel is present on peripheral T cells of miniswine. Using the peptidyl Kv1.3 inhibitor, margatoxin, we demonstrate that Kv1.3 also regulates the resting membrane potential, and that blockade of Kv1.3 inhibits, in vivo, both a delayed-type hypersensitivity reaction and an Ab response to an allogeneic challenge. In addition, prolonged Kv1.3 blockade causes reduced thymic cellularity and inhibits the thymic development of T cell subsets. These results provide in vivo evidence that Kv1.3 is a novel target for immunomodulation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

kv13 inhibits
12
membrane potential
12
kv13
10
channel kv13
8
resting membrane
8
blockade kv13
8
peripheral cells
8
blockade
4
blockade voltage-gated
4
voltage-gated potassium
4

Similar Publications

A sex-dependent role of Kv1.3 channels from macrophages in metabolic syndrome.

Front Physiol

November 2024

Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.

Article Synopsis
  • Coronary artery disease (CAD) is a leading cause of death and disability worldwide, particularly affecting patients with type 2 diabetes (T2DM) who experience worse outcomes due to inflammation and endothelial dysfunction.* ! -
  • The study investigates the role of K1.3 channel blockers in reducing intimal hyperplasia and improving metabolic dysfunction in a T2DM mouse model, focusing on the macrophage K1.3 channels as potential therapeutic targets.* ! -
  • Results indicate that K1.3 channel expression is increased in macrophages from T2DM mice, especially in females, but these channels primarily influence cell migration rather than metabolic function or phagocytosis.* !
View Article and Find Full Text PDF

Background: Changes in K channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K channels. Their involvement in hydrogen sulfide (HS)-mediated vasorelaxation is still unclear, and data about human vessels are limited.

View Article and Find Full Text PDF

K1.3-induced hyperpolarization is required for efficient Kaposi's sarcoma-associated herpesvirus lytic replication.

Sci Signal

July 2024

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK.

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K channel K1.

View Article and Find Full Text PDF

Regulation of T Lymphocyte Functions through Calcium Signaling Modulation by Nootkatone.

Int J Mol Sci

May 2024

Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea.

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, K1.

View Article and Find Full Text PDF

Use of tetraethylammonium (TEA) and Tris loading for blocking TRPM7 channels in intact cells.

Front Pharmacol

April 2024

Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, United States.

Tetraethylammonium (TEA), a quaternary ammonium compound, is a well-known blocker of potassium channels belonging to various subfamilies, such as K1-3, K1, 2 and prokaryotic KcsA. In many cases, TEA acts from the extracellular side by open pore blockade. TEA can also block transient receptor potential (TRP) cation channels, such as TRPM7, in a voltage-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!