The voltage activated K+ channel (Kv1.3) has recently been identified as the molecule that sets the resting membrane potential of peripheral human T lymphoid cells. In vitro studies indicate that blockage of Kv1.3 inhibits T cell activation, suggesting that Kv1.3 may be a target for immunosuppression. However, despite the in vitro evidence, there has been no in vivo demonstration that blockade of Kv1.3 will attenuate an immune response. The difficulty is due to species differences, as the channel does not set the membrane potential in rodent peripheral T cells. In this study, we show that the channel is present on peripheral T cells of miniswine. Using the peptidyl Kv1.3 inhibitor, margatoxin, we demonstrate that Kv1.3 also regulates the resting membrane potential, and that blockade of Kv1.3 inhibits, in vivo, both a delayed-type hypersensitivity reaction and an Ab response to an allogeneic challenge. In addition, prolonged Kv1.3 blockade causes reduced thymic cellularity and inhibits the thymic development of T cell subsets. These results provide in vivo evidence that Kv1.3 is a novel target for immunomodulation.
Download full-text PDF |
Source |
---|
Front Physiol
November 2024
Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.
Fundam Clin Pharmacol
December 2024
Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
Background: Changes in K channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K channels. Their involvement in hydrogen sulfide (HS)-mediated vasorelaxation is still unclear, and data about human vessels are limited.
View Article and Find Full Text PDFSci Signal
July 2024
School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK.
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K channel K1.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea.
Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, K1.
View Article and Find Full Text PDFFront Pharmacol
April 2024
Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, United States.
Tetraethylammonium (TEA), a quaternary ammonium compound, is a well-known blocker of potassium channels belonging to various subfamilies, such as K1-3, K1, 2 and prokaryotic KcsA. In many cases, TEA acts from the extracellular side by open pore blockade. TEA can also block transient receptor potential (TRP) cation channels, such as TRPM7, in a voltage-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!