The role of cytochrome P450 metabolism of fatty acids and lipid peroxidation in the alterations of the fatty acid composition of the liver and liver pathology was investigated. The CYP2E1 inhibitors partially prevented CYP2E1 induction by ethanol and completely blocked lipid peroxidation. However, the liver pathology induced by ethanol was only partially prevented as was the decrease in arachidonic acid in total liver lipid, triglycerides and cholesterol esters. This means that liver peroxidation induced by ethanol can not completely account for the liver pathology or the decrease in arachidonic acid caused by ethanol. Lauric acid omega-1 hydroxidation by the liver microsomes in vitro was increased by ethanol and partially blocked by CYP2E1 inhibitors. However, although ethanol feeding increased the total hydroxidation and epoxidation of arachidonic acid, these were not inhibited by CYP2E1 inhibitors. Thus the ethanol-induced arachidonic acid depletion is not likely due to CYP2E1 metabolism of arachidonic acid, since the severity of liver pathology correlated negatively with the decrease in arachidonic acid in the ethanol-fed rats. The increase in its metabolism by microsomes and decrease in synthesis may be an important mechanism of ethanol-induced liver injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/127.5.907S | DOI Listing |
Front Vet Sci
January 2025
College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
Introduction: This study examines the effects of steam-flaked corn starter on pre-weaned Simmental calves' growth, immunity, and metabolism. Despite benefits shown in adult cattle, research on calves is limited. The goal is to optimize calf feeding for better growth, health, and nutrient use.
View Article and Find Full Text PDFDiabetol Int
January 2025
Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.
An elevated level of saturated fatty acids (SFAs) can cause non-alcoholic fatty liver disease (NAFLD). While n-3 polyunsaturated fatty acids (PUFAs) were shown to improve NAFLD, the effects of n-6 PUFAs in the liver have not been fully elucidated. We examined the association between NAFLD and n-6 PUFAs, particularly dihomo-γ-linolenic acid (DGLA), in patients with type 2 diabetes.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.
Dairy cows with clinical ketosis (CK) exhibit metabolic changes, including intense adipose tissue (AT) lipolysis and systemic insulin resistance, that increase plasma BHB and free fatty acids (FFA). Cows with CK also have systemic inflammation, predisposing them to inflammatory and infectious diseases. This inflammatory process is modulated in part by oxidized fatty acids (oxylipins) that regulate all aspects of inflammation.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.
Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data.
View Article and Find Full Text PDFPostgrad Med J
January 2025
Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 42 Wenhua West Road, Lixia District, Jinan, Shandong Province 250011, China.
Background: The formation of gallstones is a multifactorial process involving lifestyle habits, lipid metabolism disorders, and genetic factors. This study aims to explore the association between 19 types of dietary fatty acids and gallstone disease using large-scale population data, assess the correlation between dietary fatty acids and serum fatty acids, and investigate the causal relationship between plasma lipids and gallstone disease from a genetic perspective.
Methods: We employed a cross-sectional study design, combined with logistic regression analysis to evaluate the association between dietary fatty acids and gallstone disease.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!