Lipid peroxidation, which may be involved in the pathogenesis of acute pancreatitis, is usually assessed in vitro or indirectly using antioxidants or free radical scavengers. We assessed lipid peroxidation in an in vivo model by measuring ethane exhalation in two models of acute pancreatitis. Edematous acute pancreatitis was induced by a supramaximal intraperitoneal injection of cerulein. Necrotizing acute pancreatitis was induced by retrograde infusion of sodium taurocholate into the pancreaticobiliary duct. Rats were placed in closed chambers and ethane exhalation was measured in aliquots. Ethane exhalation was significantly increased (p < 0.002) in cerulein (n = 12)- but not in taurocholate (n = 6)-induced pancreatitis compared to controls (n = 12 and 6, respectively). Our results suggest that free radicals may play a role in the pathogenesis of edematous pancreatitis but do not play an important role in the progression to necrotizing pancreatitis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006676-199705000-00004DOI Listing

Publication Analysis

Top Keywords

acute pancreatitis
16
lipid peroxidation
12
ethane exhalation
12
pancreatitis
8
pancreatitis induced
8
play role
8
vivo assessment
4
assessment lipid
4
peroxidation experimental
4
experimental edematous
4

Similar Publications

Endoscopic Management of Benign Pancreaticobiliary Disorders.

J Clin Med

January 2025

Division of Gastroenterology and Hepatology, Center for Digestive Health, Virginia Mason, Franciscan Health, Seattle, WA 98101, USA.

Endoscopic management of benign pancreaticobiliary disorders encompasses a range of procedures designed to address complications in gallstone disease, choledocholithiasis, and pancreatic disorders. Acute cholecystitis is typically treated with cholecystectomy or percutaneous drainage (PT-GBD), but for high-risk or future surgical candidates, alternative decompression methods, such as endoscopic transpapillary gallbladder drainage (ETP-GBD), and endoscopic ultrasound (EUS)-guided gallbladder drainage (EUS-GBD), are effective. PT-GBD is associated with significant discomfort as well as variable adverse event rates.

View Article and Find Full Text PDF

Telling Ghost Stories Around a Bonfire-A Literature Review of Acute Bleeding Secondary to Pancreatitis.

Medicina (Kaunas)

January 2025

Emergency Surgery Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.

Bleeding is a rare but serious complication of pancreatitis, significantly increasing morbidity and mortality. It can arise from various sources, including erosion of blood vessels by inflammatory processes, formation of pseudoaneurysms, and gastrointestinal bleeding. Early diagnosis and timely intervention are crucial for patient survival.

View Article and Find Full Text PDF

Unveiling the Emerging Role of Xanthine Oxidase in Acute Pancreatitis: Beyond Reactive Oxygen Species.

Antioxidants (Basel)

January 2025

Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.

Acute pancreatitis (AP) is a potentially fatal acute digestive disease that is widespread globally. Although significant progress has been made in the previous decade, the study of mechanisms and therapeutic strategies is still far from being completed. Xanthine oxidase (XO) is an enzyme that catalyzes hypoxanthine and xanthine to produce urate and is accompanied by the generation of reactive oxygen species (ROS) in purine catabolism.

View Article and Find Full Text PDF

Acute pancreatitis is a common condition with a variable prognosis. While the overall mortality rate of acute pancreatitis is relatively low, ranging between 3 and 5% in most cases, severe forms can result in significantly higher morbidity and mortality. Therefore, early risk assessment is crucial for optimizing management and treatment.

View Article and Find Full Text PDF

Background: Obesity is a significant risk factor for severe acute pancreatitis (SAP) and is typically associated with increased intestinal permeability. Understanding the role of specific molecules can help reduce the risk of developing SAP. Claudin 11 (CLDN11), a member of the Claudin family, regulates the permeability of various internal barriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!