Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular recording experiments on the dorsal cochlear nuclei of unanesthetized decerebrate gerbils were conducted. Acceptable recordings were those in which resting potentials were -50 mV or less and action potentials (APs) were > or = 40 mV. Responses to short-duration tones and noise, and to current pulses delivered via recording electrodes, were acquired. Units were classified according to the response map scheme (types I-IV). Ninety-two acceptable recordings were made. Most units had simple APs (simple-spiking units); nine units had both simple and complex APs, which are bursts of spikes embedded on slow, transient depolarizations (complex-spiking units). Of 83 simple-spiking units, 46 were classified as follows: type I/III (9 units), type II (9 units), type III (25 units), type IV (2 units), and type IV-T (1 unit). One complex-spiking unit was classifiable (a type III unit); six were unclassifiable because of weak acoustic responses. Classifying 39 other simple-spiking units and 2 complex-spiking units was impossible, because they were either injured or lost before sufficient data were acquired. Many simple-spiking units showed depolarization or hyperpolarization (approximately 5-10 mV) during acoustic stimulation; some were hyperpolarized during the stimulus-off period. Type I/III units were not hyperpolarized during off-best-frequency (off-BF) stimulation. In contrast, many type II units were hyperpolarized by off-BF frequencies, suggesting that they received strong inhibitory sideband inputs. When inhibited, some type III units were hyperpolarized. Type IV units were hyperpolarized during inhibition even at low levels (<60 dB SPL); sustained depolarizations occurred only at higher levels, suggesting that they receive strong inhibitory and weak excitatory inputs. Several intracellular response properties were statistically different from those of extracellularly recorded units. Intracellularly recorded type II units had higher thresholds and lower maximum BF-driven and noise-driven rates than their extracellularly recorded counterparts. Type I/III units recorded intracellularly had lower maximum BF-driven rates. Type III units recorded intracellularly had higher maximum noise rates compared with those recorded extracellularly. Weaker acoustic responses most likely result from membrane disruption, but heightened responses may be related to weakened chloride-channel-dependent inhibition due to altered driving forces resulting from KCl leakage. Firing rates of simple-spiking units increased monotonically with increasing levels of depolarizing current pulses. In contrast, many complex-spiking units responded nonmonotonically to depolarizing current injection. The monotonic rate-versus-current curves and the nonmonotonic rate-versus-sound level curves of type IV and III units suggest that the acoustic behavior is the result of extrinsic inhibitory inputs and not due solely to intrinsic membrane properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1997.77.5.2549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!