Characterization of chemical inhibitors of brefeldin A-activated mono-ADP-ribosylation.

J Biol Chem

Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro (Chieti), Italy.

Published: May 1997

Brefeldin A, a toxin inhibitor of vesicular traffic, induces the selective mono-ADP-ribosylation of two cytosolic proteins, glyceraldehyde-3-phosphate dehydrogenase and the novel GTP-binding protein BARS-50. Here, we have used a new quantitative assay for the characterization of this reaction and the development of specific pharmacological inhibitors. Mono-ADP-ribosylation is activated by brefeldin A with an EC50 of 17.0 +/- 3.1 microg/ml, but not by biologically inactive analogs including a brefeldin A stereoisomer. Brefeldin A acts by increasing the Vmax of the reaction, whereas it does not influence the Km of the enzyme for NAD+ (154 +/- 13 microM). The enzyme is an integral membrane protein present in most tissues and is modulated by Zn2+, Cu2+, ATP (but not by other nucleotides), pH, temperature, and ionic strength. To identify inhibitors of the reaction, a large number of drugs previously tested as blockers of bacterial ADP-ribosyltransferases were screened. Two classes of molecules, one belonging to the coumarin group (dicumarol, coumermycin A1, and novobiocin) and the other to the quinone group (ilimaquinone, benzoquinone, and naphthoquinone), rather potently and specifically inhibited brefeldin A-dependent mono-ADP-ribosylation. When tested in living cells, these molecules antagonized the tubular reticular redistribution of the Golgi complex caused by brefeldin A at concentrations similar to those active in the mono-ADP-ribosylation assay in vitro, suggesting a role for mono-ADP-ribosylation in the cellular actions of brefeldin A.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.22.14200DOI Listing

Publication Analysis

Top Keywords

brefeldin
8
mono-adp-ribosylation
6
characterization chemical
4
chemical inhibitors
4
inhibitors brefeldin
4
brefeldin a-activated
4
a-activated mono-adp-ribosylation
4
mono-adp-ribosylation brefeldin
4
brefeldin toxin
4
toxin inhibitor
4

Similar Publications

PTPA localized in the Golgi apparatus plays an important role in osteoblast differentiation.

Biochem Biophys Res Commun

February 2025

Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan. Electronic address:

Regulatory subunits of protein phosphatase 2A (PP2A) define the substrate and functional specificity of the PP2A holoenzyme within specific organelles. While PP2A regulates osteoblast differentiation, the roles and localization of its regulatory subunits in osteoblasts remain unclear. Here, we identified PTPA, a PP2A regulatory protein, predominantly localized to the Golgi apparatus, closely overlapping with the Golgi marker Giantin.

View Article and Find Full Text PDF

Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas.

Int J Mol Sci

December 2024

Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.

Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.

View Article and Find Full Text PDF

A Novel Variant in a Charcot-Marie-Tooth Type 2: Insights from Familial Analysis.

Genes (Basel)

November 2024

Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy.

Background/objectives: Axonal Charcot-Marie-Tooth disease type 2 (CMT2) accounts for 24% of Hereditary Motor/Sensory Peripheral Neuropathies. CMT2 type GG, due to four distinct heterozygous mutations in the Golgi brefeldin A resistant guanine nucleotide exchange factor 1 () gene (OMIM 606483), was described in seven cases from four unrelated families with autosomal dominant inheritance. It is characterized by slowly progressive distal muscle weakness and atrophy, primarily affecting the lower limbs.

View Article and Find Full Text PDF

Ceramide (Cer) is synthesized in the endoplasmic reticulum (ER) using sphinganine as the common backbone and is then transported to the Golgi apparatus to synthesize two complex sphingolipids, sphingomyelin (SM) and glucosylceramide (GlcCer). Brefeldin A (BFA) affects the structure of the Golgi apparatus, resulting in the redistribution of the Golgi proteins into the ER. Therefore, BFA has been used to examine the ER-to-Golgi trafficking of lipids, but the detailed lipid changes in cells upon BFA treatment are not fully understood.

View Article and Find Full Text PDF

is the main pathogen of peanut pod rot in China. To investigate the type of toxin and its pathogenic mechanism, a macrolide, brefeldin A, was isolated. The structure of the compound was identified by 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!