Dopamine enhances somatostatin receptor-mediated inhibition of adenylate cyclase in rat striatum and hippocampus.

J Neurosci Res

Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá de Henares, Madrid, Spain.

Published: May 1997

Although there is evidence that suggests that dopamine (DA) has stimulatory effects on somatostatinergic transmission, it is unknown to date if DA increases the activity of the somatostatin (SS) receptor-effector system in the rat brain. In this study, we evaluated the effects of the administration of DA and the DA D1-like (D1, D5) receptor antagonist SCH 23390 and the D2-like (D2, D3, D4) receptor antagonist spiperone on the SS receptor-adenylate cyclase (AC) system in the Sprague-Dawley rat striatum and hippocampus. An intracerebroventricular injection of DA (0.5 microgram/rat) increased the number of SS receptors and decreased their apparent affinity in the striatum and hippocampus 15 hr after its administration. The simultaneous administration of the DA receptor antagonists SCH 23390 (0.25 mg/kg, ip) and spiperone (0.1 mg/kg, ip) before DA injection partially prevented the DA-induced increase in SS binding. The administration of SCH 23390 plus spiperone alone produced a significant decrease in the number of SS receptors in both brain areas studied at 15 hr after injection, an effect that disappeared at 24 hr. The increased number of SS receptors in the DA-treated rats was associated with an increased capacity of SS to inhibit basal and forskolin (FK)-stimulated (AC) activity in the striatum and hippocampus at 15 hr after injection. This effect had disappeared at 24 hr. By contrast, basal and FK-stimulated enzyme activities were unaltered after DA injection. No significant changes in the levels of the alpha i (alpha i1 + alpha i2) subunits were found in DA-treated rats as compared with control rats. In addition, the immunodetection of the alpha i1 or alpha i2 subunits showed no significant changes in their levels in DA-treated rats when compared with controls. DA injection also induced an increase in SS-like immunoreactive content in the rat striatum but not hippocampus at 15 hr after administration and returned to control values at 24 hr. These results provide direct evidence of a functional linkage between the dopaminergic and somatostatinergic systems at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-4547(19970501)48:3<238::aid-jnr6>3.0.co;2-gDOI Listing

Publication Analysis

Top Keywords

striatum hippocampus
20
rat striatum
12
sch 23390
12
number receptors
12
da-treated rats
12
alpha alpha
12
receptor antagonist
8
increased number
8
hippocampus administration
8
injection disappeared
8

Similar Publications

Effects of psilocybin on mouse brain microstructure.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (P.C.F., A.P.S., J.J.Y.).

Background And Purpose: There is surging interest in the therapeutic potential of psychedelic compounds like psilocybin in the treatment of psychiatric illnesses like major depressive disorder (MDD). Recent studies point to the rapid antidepressant effect of psilocybin; however, the biological mechanisms underlying these differences remain unknown. This study determines the feasibility of using diffusion MRI to characterize and define the potential spatiotemporal microstructural differences in the brain following psilocybin treatment in C57BL/6J male mice.

View Article and Find Full Text PDF

Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a leading cause of mortality worldwide and often results in substantial cognitive, motor, and psychological impairments, triggering oxidative stress, neuroinflammation, and neurodegeneration. This study examined the neuroprotective effects of azithromycin (AZI) in TBI.

Methods: TBI was induced in rats using the weight-drop method.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a highly heterogeneous disorder, with notable variations among cases in structural brain abnormalities. To address this heterogeneity, our study aimed to delineate OCD subtypes based on individualized gray matter morphological differences. We recruited 100 untreated, first-episode OCD patients and 106 healthy controls for structural imaging scans.

View Article and Find Full Text PDF

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!