Interactions of a number of globular proteins with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide were studied. Under conditions of carbodiimide excess at a protein concentration lower than 88.5 x 10(-5) mol/l, the crosslinking reaction was found to proceed exclusively by an intramolecular mechanism. This resulted in conformational changes in the protein secondary structure and decreased its biological activity. At higher protein concentrations, the reaction of intramolecular crosslinking was always the first to proceed, and only then intramolecularly crosslinked proteins interacted. The reaction of intermolecular crosslinking was not followed by a further change in the protein conformation and activity.
Download full-text PDF |
Source |
---|
Compr Rev Food Sci Food Saf
January 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
Most nutraceuticals have low stability and solubility, making it difficult to achieve ideal bioavailability by directly incorporating into food. Therefore, constructing delivery systems to protect nutraceuticals is an essential strategy. Proteins and polysaccharides have become ideal materials for encapsulating nutraceuticals due to their superior nutritional value, edible safety, and physicochemical properties.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA. Electronic address:
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA).
View Article and Find Full Text PDFFood Chem
January 2025
Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States. Electronic address:
This study evaluated the properties of lentil protein, pea protein, quinoa protein, and soy protein as natural nanoparticle stabilizers and their interactions with pectin and chitin nanofiber in preparing high internal phase Pickering emulsions (HIPPEs). The globular plant proteins interact with polysaccharides through hydrogen bonding and electrostatic interactions, transforming the structure into complex morphologies, including fibrous and elliptical shapes. These complex nanoparticles exhibited enhanced thermal decomposition stability, and the HIPPEs constructed by them demonstrated significantly improved apparent viscosity and elastic modulus, with a yield stress of 931.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China.
A comprehensive strategy, including spectroscopic, molecular simulation, proteomics, and bioinformatics techniques, was employed to investigate a novel triazole, 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole, its interactions with high-abundance blood proteins, and identification of low-abundance proteins. The binding constants and thermodynamic parameters of the triazole to two high-abundance blood globular proteins, human serum albumin, and human immunoglobulin G (HIgG), were obtained by spectroscopic techniques and computational chemistry. The two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed to isolate and identify differentially expressed low-abundance proteins in human blood serum samples following exposure to the triazole.
View Article and Find Full Text PDFExpert Rev Proteomics
January 2025
Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
Introduction: The DeepMind's AlphaFold (AF) has revolutionized biomedical research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules.
Areas Covered: In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!