In mammalian cells, there are two isoforms of DNA topoisomerase II, designated alpha (170-kDa form) and beta (180-kDa form). Previous studies using cell lines have shown that the topoisomerase IIalpha and beta isoforms are differentially regulated during the cell cycle and in response to changes in growth state. Moreover, both isoforms can act as targets for a range of anti-tumour drugs. Here, we have analysed the normal tissue distribution in humans of topoisomerase IIalpha and beta using isoform-specific antibodies. In addition, we have studied expression of these isoforms in 69 primary tumour biopsies, representative either of tumours that are responsive to topoisomerase II-targeting drugs (breast, lung, lymphoma and seminoma) or of those that show de novo drug resistance (colon). Topoisomerase IIalpha was expressed exclusively in the proliferating compartments of all normal tissues, and was detectable in both the cell nucleus and cytoplasm. In biologically aggressive or rapidly proliferating tumours (e.g. high-grade lymphomas and seminomas), there was a high level of topoisomerase IIalpha, although expression was still detectable in colon tumours, indicating that expression of this isoform is not sufficient to explain the intrinsic drug resistance of colon tumours. Topoisomerase IIbeta was expressed ubiquitously in vivo and was localized in both the nucleoli and the nucleoplasm. This isoform was present in quiescent cell populations, but was expressed at a generally higher level in all tumours and proliferating cells than in normal quiescent tissues. We conclude that topoisomerase IIalpha is a strict proliferation marker in normal and neoplastic cells in vivo, but that topoisomerase IIbeta has a much more general cell and tissue distribution than has topoisomerase IIalpha. The apparent up-regulation of topoisomerase IIbeta in neoplastic cells has implications for the response of patients to anti-tumour therapies that include topoisomerase II-targeting drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228248PMC
http://dx.doi.org/10.1038/bjc.1997.227DOI Listing

Publication Analysis

Top Keywords

topoisomerase iialpha
24
topoisomerase
13
topoisomerase iibeta
12
expression isoforms
8
isoforms dna
8
dna topoisomerase
8
normal neoplastic
8
iialpha beta
8
tissue distribution
8
topoisomerase ii-targeting
8

Similar Publications

In Vitro Evaluation, Chemical Profiling, and In Silico ADMET Prediction of the Pharmacological Activities of Root Extract.

Pharmaceuticals (Basel)

December 2024

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.

L., is a plant with established pharmacological properties, but the root extract (AARE) remains unexplored. The aim of this study was to examine the chemical composition of AARE and assess its biological activity, which included antidiabetic, antibacterial, anticancer, and antioxidant properties.

View Article and Find Full Text PDF

Incomplete sister centromere decatenation results in centromeric ultrafine anaphase bridges (UFBs). PICH (PLK1-interacting checkpoint helicase), a DNA translocase, plays a crucial role in UFB resolution by recruiting UFB-binding proteins and stimulating topoisomerase IIα. However, the involvement of distinct PICH functions in UFB resolution remains ambiguous.

View Article and Find Full Text PDF

Toxicity of anthraquinone derivatives in relation to non-linear optical properties and electron correlation.

J Biomol Struct Dyn

December 2024

Department of Dyestuff Technology (Currently named Department of Speciality Chemicals Technology), Institute of Chemical Technology, Mumbai, Maharashtra, India.

1,4-Dialkylamino -5,8-dihydroxy anthraquinones are investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) for their growth inhibitory potential. The frontier molecular orbital shows that the electron density is located at the anthraquinone core and at the substituents NH and OH in both HOMO as well as in LUMO. The chemical potential and electrophilicity index showed a direct relation, while hardness and hyperhardness had an inverse association with an energy gap.

View Article and Find Full Text PDF

Advances in research on malignant tumors and targeted agents for TOP2A (Review).

Mol Med Rep

February 2025

Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China.

The DNA topoisomerase isoform topoisomerase IIα (TOP2A) is essential for the condensation and segregation of cellular mitotic chromosomes and the structural maintenance. It has been demonstrated that TOP2A is highly expressed in various malignancies, including lung adenocarcinoma (LUAD), hepatocellular carcinoma (HCC) and breast cancer (BC), associating with poor prognosis and aggressive tumor behavior. Additionally, TOP2A has emerged as a promising target for cancer therapy, with widespread clinical application of associated chemotherapeutic agents.

View Article and Find Full Text PDF

Background: Fagonia cretica L. (Family: Zygophyllaceae), is a wild shrub mostly found in Mediterranean districts and extensively used in folk medicine for a vast array of purposes such as antidiabetic and anticancer during the early stages. The goal of the current study was to validate the antioxidant, anti-inflammatory, and cytotoxic properties of Egyptian F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!