The purpose of this study was to establish the correlation between biological and chemical assays for the quantification of rifapentine in human plasma. The bioassay was found to overestimate antibiotic plasma concentration when compared to the high-performance liquid chromatography (HPLC) assay for rifapentine (r = 0.9538, n = 220). This was because of the presence of varying amounts of the biologically active 25-O-desacetyl metabolite in the test samples. A better correlation (r = 0.9804, n = 220) was observed when the bioassay data were compared to combined parent-metabolite HPLC values. Such correlative data are necessary adjuncts in the establishment of antibiotic susceptibility test breakpoints.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0732-8893(97)00027-8 | DOI Listing |
J Fluoresc
January 2025
College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, P.R. China.
Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.
View Article and Find Full Text PDFPlanta
January 2025
Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran.
This study presents a novel, eco-friendly method for removing methyldiethanolamine (MDEA) from wastewater, addressing its environmental impact and elevated chemical oxygen demand (COD) from gas refineries. We employed two wetland plants, Phragmites australis and Typha latifolia, utilizing a hydroponics approach to assess MDEA removal efficiency. Wastewater samples from the Ilam gas refinery in Iran were tested at varying initial concentrations (50 to 1600 ppm) over three consecutive 7-day periods, with a 1-day rest interval.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Pharmaceutics, ShriRam College of Pharmacy, Banmore, Morena, Madhya Pradesh, India.
Molecular Dynamics (MD) simulations are now widely utilized in pharmaceutical nanotechnology to gain deeper understanding of nanoscale processes imperative to drug design. This review has also detailed how MD simulation can be employed in the study of drug-nanocarrier interactions, controlling release of chemical compounds from drug delivery systems and increasing solubility and bioavailability of nanocarriers. Furthermore, MD contributes to examining the drug delivery systems, measuring the toxic effects, and determining biocompatibility of nanomedical systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!