Five in vitro assays have been applied to screen the efficacy of potential chemopreventive agents. These assays measure a) inhibition of morphological transformation in rat tracheal epithelial (RTE) cells, b) inhibition of anchorage independence in human lung tumor (A427) cells, c) inhibition of hyperplastic alveolar nodule formation in mouse mammary organ cultures (MMOC), d) inhibition of anchorage independence in mouse JB6 epidermal cells, and e) the inhibition of calcium tolerance in human foreskin epithelial cells. The efficacy of many of these same agents in whole animal studies of lung, colon, mammary gland, skin, and urinary bladder carcinogenesis has also been measured. The aim herein is to estimate the positive and negative predictive values of these in vitro assays against whole animal chemopreventive efficacy data using the same chemicals. For three of these assays--using RTE, A427 cells and mouse mammary organ culture (MMOC)-enough data are available to allow the estimate to be made. Such extrapolations of in vitro data to the in vivo situation are difficult at best. There are many dissimilarities between the two assay systems. The in vitro assays use respiratory and mammary epithelial cells, while the in vivo assays use respiratory, mammary, colon, bladder and skin cells. The in vitro assays use the carcinogens benzo(a)pyrene (B(a)P) and 7,12-dimethylbenz(a)anthracene (DMBA), while the in vivo assays use B(a)P, DMBA, N-methyl-N-nitrosourea (MNU), N,N'-diethylnitrosamine (DEN), azoxymethane (AOM), and N-butyl-N-(4-hydroxybutyl)nitrosoamine (OH-BBN). There are vast differences in pharmacodynamics and pharmacokinetics in vitro and in vivo, yet it is possible to rapidly screen chemicals in vitro for efficacy at one-tenth the cost and complete tests in weeks instead of months. A positive in vitro assay was defined as a 20% inhibition (compared with control) for the RTE and A427 assays and a 60% inhibition for the MMOC assay at nontoxic concentrations. For in vivo assays, the criterion for a positive result was a statistically significant inhibition of incidence, multiplicity or a significant increase in latency (mean time to first tumor). For an agent to be considered negative in animals, it required negative results in at least two different organ systems and no positive results. Using the battery of three in vitro tests, the positive predictive value for having one, two, or three positive in vitro assays and at least one positive whole animal test was 76%, 80%, and 83% respectively. The negative predictive values for one, two or all three in vitro assays was 25%, 27%, and 50%. From these data it is observed that in vitro assays give valuable positive predictive values and less valuable negative predictive values. The mechanisms of chemoprevention are not well understood. Seven categories of agents were examined for their cancer preventing both in vitro and in vivo: antiinflammatories, antioxidants, arachadonic acid metabolism inhibitors, GSH inducers, GST inducers, ODC inhibitors, and PKC inhibitors. Three or even five in vitro assays cannot be all-inclusive of the many mechanisms of cancer prevention. However, three assays help to predict whole animal efficacy with reasonable positive predictive values. Much work and development remains to be done to rapidly identify new chemopreventive drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.240630704 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFMol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China.
Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo.
View Article and Find Full Text PDFVirulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!