Smad proteins are a family of highly conserved, intracellular proteins that signal cellular responses downstream of transforming growth factor-beta (TGF-beta) family serine/threonine kinase receptors. One of these molecules, Smad4, originally identified as the candidate tumor suppressor gene dpc-4, reconstitutes TGF-beta- and activin-dependent transcriptional responses in Smad4 null cell lines and interacts in a ligand-dependent manner with other Smad family members in both TGF-beta, activin, and bone morphogenetic protein-2/-4 pathways. Here, we used an assay based on the restoration of ligand-dependent transcriptional responses in a Smad4 null cell line to characterize functional domain structures within Smad4. We showed that restoration of TGF-beta-induced transcriptional responses by Smad4 was inhibited by co-transfection with a kinase dead TGF-beta type II receptor and that constitutive activation was blocked with TGF-beta neutralizing antibodies, confirming the essential role of Smad4 in TGF-beta signaling. Using a series of Smad4 mutation, deletion, and Smad1/Smad4 chimera constructs we identified a 47-amino acid deletion within the middle-linker region of Smad4 that is essential for the mediation of signaling responses. In addition, we showed that the NH2-terminal domain of Smad4 augments ligand-dependent activation associated with the middle-linker region, indicating that there is a distinct ligand-response domain within the N terminus of this molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.21.13690 | DOI Listing |
Cancer Med
January 2025
Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.
Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.
Plant Divers
November 2024
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
Salinity is a severe abiotic stress that affects plant growth and yield. Salinity stress activates jasmonate (JA) signaling in , but the underlying molecular mechanism remains to be elucidated. In this study, we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1 (COI1)-mediated JA signaling for this process.
View Article and Find Full Text PDFMol Ther Oncol
March 2025
School of Interdisciplinary Informatics, University of Nebraska Omaha, 1110 South 67th Street, Omaha, NE 68182, USA.
Neuroblastoma (NB) poses a significant challenge in pediatric cancer care due to its aggressive nature and poor prognosis. While advances have been made in clinical treatments, therapy resistance remains a tough hurdle in NB treatment. While much research has focused on identifying oncogenes in NB, there has been less emphasis on understanding tumor suppressors.
View Article and Find Full Text PDFiScience
January 2025
European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy.
Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75 receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75 levels are transiently modulated, yet the molecular mechanisms underlying this process are not known.
View Article and Find Full Text PDFJ Virus Erad
December 2024
HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!