The columnar organization of the neocortex.

Brain

Philip Bard Laboratories, Department of Neuroscience, Baltimore, MD 21218, USA.

Published: April 1997

The modular organization of nervous systems is a widely documented principle of design for both vertebrate and invertebrate brains of which the columnar organization of the neocortex is an example. The classical cytoarchitectural areas of the neocortex are composed of smaller units, local neural circuits repeated iteratively within each area. Modules may vary in cell type and number, in internal and external connectivity, and in mode of neuronal processing between different large entities; within any single large entity they have a basic similarity of internal design and operation. Modules are most commonly grouped into entities by sets of dominating external connections. This unifying factor is most obvious for the heterotypical sensory and motor areas of the neocortex. Columnar defining factors in homotypical areas are generated, in part, within the cortex itself. The set of all modules composing such an entity may be fractionated into different modular subsets by different extrinsic connections. Linkages between them and subsets in other large entities form distributed systems. The neighborhood relations between connected subsets of modules in different entities result in nested distributed systems that serve distributed functions. A cortical area defined in classical cytoarchitectural terms may belong to more than one and sometimes to several distributed systems. Columns in cytoarchitectural areas located at some distance from one another, but with some common properties, may be linked by long-range, intracortical connections.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/120.4.701DOI Listing

Publication Analysis

Top Keywords

distributed systems
12
columnar organization
8
organization neocortex
8
classical cytoarchitectural
8
cytoarchitectural areas
8
areas neocortex
8
large entities
8
neocortex
4
neocortex modular
4
modular organization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!