Members of the microbial guanyl-specific ribonuclease family catalyse the endonucleolytic cleavage of single-stranded RNA in a two-step reaction involving transesterification to form a 2',3'-cyclic phosphate and its subsequent hydrolysis to yield the respective 3'-phosphate. The extracellular ribonuclease from Bacillus intermedius (binase, RNase Bi) shares a common mechanism for RNA hydrolysis with mammalian RNases. Two catalytic residues in the active site of binase, Glu72 and His101, are thought to be involved in general acid-general base catalysis of RNA cleavage. Using site-directed mutagenesis, binase mutants were produced containing amino acid substitutions H101N and H101T and their catalytic properties towards RNA, poly(I), poly(A), GpC and guanosine 2',3'-cyclic phosphate (cGMP) substrates were studied. The engineered mutant proteins are active in the transesterification step which produces the 2',3'-cyclic phosphate species but they have lost the ability to catalyse hydrolysis of the cyclic phosphate to give the 3' monophosphate product.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/10.3.273DOI Listing

Publication Analysis

Top Keywords

2'3'-cyclic phosphate
12
rna cleavage
8
rna
5
hydrolysis
4
cleavage hydrolysis
4
hydrolysis splitting
4
splitting catalytic
4
catalytic activities
4
binase
4
activities binase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!