Age-related and ambient temperature-related changes in motor activity, body temperature, body weight (b.w.), and food consumption were studied in the long-lived Peromyscus leucopus mouse at environmental temperatures of 29 and 21 degrees C. Major changes in physiological performance were observed between the young (6 months) and old (60-72 month) age groups. The number of daily activity episodes, and total activity output was significantly lower in old mice. Maximum, average and minimum daily body temperature was lower in the old mice and a significant ambient temperature-by-age interaction was found. Maximum, minimum, and average daily b.w. was higher in old mice. Motor activity was evenly distributed over the active (night) phase in young mice but in old mice activity was significantly greater in the late night partition of the active cycle than in the early night partition. Both groups were significantly more active at night than during the day. Most of the food consumption in both groups occurred at night, but young mice consumed significantly more during the late night partition than the early night partition, and the consumption rates for old mice were not significantly different between early and late night partitions. The percentage of activity episodes involved with food consumption in both groups was significantly higher during the night partition, but the percentage during the early night partition was significantly higher in old mice than in young mice. Significant episodes of circadian torpor occurred in a high percentage of old mice at 06:00, on consecutive days, at both environmental temperatures, but young mice expressed no evidence of torpor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0047-6374(96)01834-9 | DOI Listing |
Resource partitioning is crucial for the coexistence of colonial herons, as it allows multiple species to share the same habitat while minimising competition. This study took advantage of a natural experiment in 2006 and 2007 when Black-crowned Night Herons were prevented from breeding at Lake Fetzara in the first year due to the presence of a feral cat. This event provided valuable insight into the spatial and temporal dynamics of nest site selection among coexisting heron species, which consisted of Cattle Egrets (), Little Egrets () and Squacco Herons ().
View Article and Find Full Text PDFPlants (Basel)
November 2024
Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, Harbin 150040, China.
Understanding the sensitivity of ecosystem respiration (ER) to increasing temperature is crucial to predict how the terrestrial carbon sink responds to a warming climate. The temperature sensitivity of ER may vary on a diurnal basis but is poorly understood due to the paucity of observational sites documenting real ER during daytime at a global scale. Here, we used an improved flux partitioning approach to estimate the apparent temperature sensitivity of ER during the daytime (E) and nighttime (E) derived from multiyear observations of 189 FLUXNET sites.
View Article and Find Full Text PDFEcology
January 2025
Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
Plants (Basel)
November 2024
Department of Horticultural Science, INRES-Institute of Crop Science and Resource Conservation, University of Bonn, 53121 Bonn, Germany.
Controlled environment agriculture is a promising solution to address climate change and resource limitations. Light, the primary energy source driving photosynthesis and regulating plant growth, is critical in optimizing produce quality. However, the impact of specific light spectra during night interruption on improving phytochemical content and produce quality remains underexplored.
View Article and Find Full Text PDFMar Environ Res
January 2025
Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
This study delves into the eco-dynamics of three dolphin species in the ultra-oligotrophic waters off the southern Israeli Mediterranean coast - two neritic: the common bottlenose dolphin (Tursiops truncatus) and the common dolphin (Delphinus delphis) and one pelagic: the striped dolphin (Stenella coeruleoalba). It utilizes compound-specific stable isotope analysis of individual amino acids to investigate carbon and nitrogen source variability and trophic positioning among the three species. Muscle samples from stranded individuals were analyzed for carbon (δC) and nitrogen (δN) isotopic ratios of amino acids, with ΔδN (Glutamate-Phenylalanine) acting as an indicator of relative trophic position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!