Corticotropin-releasing hormone (CRH) was infused intracerebroventricularly into rats for 7 d via a miniosmotic pump (1 microg . microl-1 . hr-1). Body temperature and locomotor activity were recorded during the treatment using biotelemetry, whereas hippocampal serotonergic neurotransmission and free corticosterone levels were monitored using in vivo microdialysis on day 7 of CRH treatment. During the microdialysis experiment, behavioral activity was scored by assessing the time during which rats were active (locomotion, grooming, eating, drinking). Continuous intracerebroventricular infusion of CRH produced a transient increase in body temperature and locomotion. Moreover, intracerebroventricularly CRH-treated rats showed elevated free corticosterone levels with no apparent diurnal rhythm. Intraperitoneal administration of bacterial endotoxin -lipopolysaccharide (LPS); 100 microg/kg body weight- on day 7 of CRH/vehicle treatment produced a marked fever response in control animals, which was significantly blunted in intracerebroventricularly CRH-treated rats. Although free corticosterone levels reached similar peak concentrations in both intracerebroventricularly vehicle- and CRH-infused groups after LPS, this response was delayed significantly by approximately 1 hr in the intracerebroventricularly CRH-treated animals. Microdialysis experiments showed no changes in basal extracellular levels of serotonin and 5-hydroxyindoleacetic acid in intracerebroventricularly CRH-infused animals. Injection of LPS in intracerebroventricularly CRH-treated rats produced a blunted 5-HT response and a delayed onset of behavioral inhibition and other signs of sickness behavior. Assessment of the endotoxin-induced cytokine responses showed significantly enhanced plasma interleukin-1 (IL-1) and IL-6 bioactivities in the intracerebroventricularly CRH-infused animals 3 hr after injection of LPS, whereas tumor necrosis factor bioactivity responses were not different. Our data demonstrate that chronically elevated brain CRH levels produce marked changes in basal (largely CRH regulated) physiological and behavioral processes accompanied by aberrant responses to an acute challenge. The present study provides evidence that chronic CRH hypersecretion is an important factor in the etiology of stress-related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6573557PMC
http://dx.doi.org/10.1523/JNEUROSCI.17-11-04448.1997DOI Listing

Publication Analysis

Top Keywords

intracerebroventricularly crh-treated
16
free corticosterone
12
corticosterone levels
12
crh-treated rats
12
intracerebroventricular infusion
8
corticotropin-releasing hormone
8
cytokine responses
8
intracerebroventricularly
8
body temperature
8
response delayed
8

Similar Publications

Corticotropin-releasing hormone (CRH) is suggested to be involved in the regulation of pain. To better evaluate the CRH-mediated behavioral alterations in the formalin inflammatory pain test, we administered CRH or the CRH receptor antagonist α-helical CRH(9-41) (ahCRH) intracerebroventricularly to male and female rats and compared the effects with those of saline control. Nociceptive stimulation was carried out through a subcutaneous injection of dilute formalin (50μL, 10%) in the plantar surface of the hind paw.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH) was infused intracerebroventricularly into rats for 7 d via a miniosmotic pump (1 microg . microl-1 . hr-1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!