Lifestyle including eating habits, physical training, smoking, drinking alcoholic beverages etc. can to a certain extent maintain or spoil our health. The physiological mechanisms of haemostasis and of lipoprotein metabolism play a role in acute cardiovascular diseases but also in a great number of chronic diseases in which vascular pathology is prominent. Imparied fibrinolysis and increased lipid levels are often incriminated in vascular disease. Lifestyle can modify fibrinolysis as well as lipid levels. Physical training, moderate eating habits, no smoking, moderate alcohol intake will be a beneficial influence on both fibrinolysis and lipid levels. The possibility that long-term pharmacological intervention may adversely affect fibrinolysis and lipid levels should always be considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1008630308694 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.
View Article and Find Full Text PDFShock
February 2025
Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
Universidade Federal Fluminense, Instituto de Saúde de Nova Friburgo, Departamento de Clínica Odontológica, Nova Friburgo, Rio de Janeiro, Brasil.
Aim: To evaluate the clinical effectiveness of ozonated sunflower oil (Oz) as an adjunctive of non-surgical periodontal therapy in patients with type 2 diabetes mellitus (DM2), on fibroblast cell viability and migration and the effectiveness of Oz on a Candida albicans (C. albicans) culture.
Methodology: In total, 32 sites in 16 DM2 with moderate to advanced periodontal disease with periodontal pocket depths ≥5mm were selected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!